Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 61-68    
  研究论文 本期目录 | 过刊浏览 |
60Si2Mn钢的低周拉扭复合微动疲劳特性
刘兵1;  何国求1; 蒋小松1; 向学渊1; 胡正飞1; 朱 昊2
1.同济大学材料科学与工程学院~上海市金属功能材料开发应用重点实验室 上海 200092
2.西南交通大学牵引动力国家重点实验室 成都 610031
The Low Cycle Tensile-torsion Fretting Fatigue Properties of 60Si2Mn Steel
LIU Bing1; HE Guoqiu1; JIANG Xiaosong1; XIANG Xueyuan1; HU Zhengfei1; ZHU Minhao2
1.Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials; School of Materials Science and Engineering; Tongji University; Shanghai 200092
2.National Power Traction Key Laboratory; Southwest Jiaotong University; Chengdu 610031
引用本文:

刘兵 何国求 蒋小松 向学渊 胡正飞 朱 昊. 60Si2Mn钢的低周拉扭复合微动疲劳特性[J]. 材料研究学报, 2010, 24(1): 61-68.
. The Low Cycle Tensile-torsion Fretting Fatigue Properties of 60Si2Mn Steel[J]. Chin J Mater Res, 2010, 24(1): 61-68.

全文: PDF(1305 KB)  
摘要: 

测量60Si2Mn钢在拉扭复合载荷作用下的低周微动疲劳特性, 研究了不同轴向循环拉伸应力幅值对微动疲劳寿命、循环软化特性以及摩擦磨损表面和断口形貌的影响。 结果表明, 随着循环拉伸应力幅值的提高, 60Si2Mn钢的微动疲劳寿命降低幅度不同, 发生循环软化的时期不断提前, 完成循环软化的疲劳周期也不断缩短。 同时, 微动摩擦副产生的氧化物磨屑对微动磨损性能有重要影响, 在疲劳前期加剧摩擦磨损, 在疲劳后期减轻摩擦磨损。 微动疲劳裂纹源形成于试样发生微动摩擦磨损的表面, 并出现疲劳台阶。 在扭矩产生的切向剪切应力作用下, 疲劳裂纹沿着与轴向45o角的方向扩展, 最终在断口上留下显著的舌状凸起, 拉应力的幅值越大舌状凸起越明显。

关键词 金属材料  微动疲劳  疲劳寿命  循环软化  断口形貌分析    
Abstract

The low cycle fretting fatigue properties of 60Si2Mn were investigated in the condition of tensile-torsion multi-axial loading. The results showed that the tensile stress amplitude affect the fretting fatigue performance significantly. With the tensile stress amplitude increasing, the fretting fatigue life reduced nonlinearly, and the cycle softening occurred earlier and completed in less cycles. Oxide wear debris generated on the fretting wear scars have a significant impact on fretting fatigue, which exacerbated fretting wear in the early-stage of fatigue, and eased the wear later. Fretting fatigue crack initialed on the fretting wear scars, propagated along 45o  angle to the axial direction at the existence of tangential shear stress, and eventually left tongue shape protrusion significantly at fracture. The greater the tensile stress amplitude, the bigger the tongue protrusion.

收稿日期: 2009-04-30     
基金资助:

国家九七三计划2007CB714704、国家自然科学基金50771073及教育部“新世纪优秀人才支持计划” NCET-05-0388资助项目。

1 J.A.Pape, R.W.Neu, A comparative study of the fretting fatigue behavior of 4340 steel and PH 13-8 Mo stainless steel, International Journal of Fatigue, 29(12), 2219(2007)
2 J.J.Madge, S.B.Leen, P.H.Shipway, A combined wear and crack nucleation-propagation methodology for fretting fatigue prediction, International Journal of Fatigue, 30(9), 1509(2008)
3 D.Nowell, D.A.Hills, D.N.Dai, Energy dissipation and crack initiation in fretting fatigue, Tribology Series, 27, 389(1994)
4 ZHOU Zhongrong, LUO Weili, LIU Jiajun, Recent development in fretting research, Tribology, 17(3), 270(1997)
(周仲荣, 罗唯力, 刘家浚, 微动摩擦学的发展现状与趋势, 摩擦学学报,  17(3), 270(1997))
5 ZHANG Dong, Trace Analysis in Mechanical Failure (Beijing, National Defense Industry Press, 1996) p.13)
(张栋,  机械失效的痕迹分析  (北京, 国防工业出版社, 1996)p.13)
6 G.S.Campbell, R.Lahey, A survey of serious aircraft accidents involving fatigue fracture, International, Journal of Fatigue, 6(1), 25(1984)
7 LIU Daoxin, HE Jiawen, Review of factors that influence fretting fatigue (FF) and investigation on FF behavior of Ti-alloy, Acta Aeronautica et Astronautica Sinica, 22(05), 454(2001)
(刘道新, 何家文, 微动疲劳影响因素及钛合金微动疲劳行为, 航空学报,  22(05), 454(2001))
8 XU Guizhen, LIU Jiajun, ZHOU Zhongrong, Application of surface modification technology in fretting tribology, Tribology, 18(2), 185(1998)
(徐桂珍, 刘家浚, 周仲荣, 表面改性技术在微动摩擦学领域中的应用, 摩擦学学报,  18(2), 185(1998))
9 LI Shizhuo, DONG Xianglin, Erosion and Fretting Wear in Materails (Beijing, China Machine Press, 1987) p.385
(李诗卓, 董祥林,  材料的冲蚀磨损与微动磨损 (北京, 机械工业出版社, 1987)p.385)
10 SHENG Guangmin, The observation, verifcation and quantification of cyclic softeningmechanism under low cycle fatigue, Physical Testing and Chemical Analysis Part A: Physical Testing, 33(7), 17(1997)
(盛光敏, 应变疲劳循环软化机制的观察、确证及定量估测, 理化检验-物理分册,  33(7), 17(1997))
11 TU Chuanjun, CHEN Zhenhua, CHEN Ding, Tribological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current, Transactions of Nonferrous Metals Society of China (English Edition), 18(5), 1157(2008)
12 M.Atapour, F.Ashrafizadeh, Tribology and cyclic oxidation behavior of plasma nitrided valve steel, Surface and Coatings Technology, 202(20), 4922(2008)
13 L.Fouilland, L.Imhoff, A.Bouteville, Composition and tribological characterization of chemically vapour-deposited TiN layer, Surface and Coatings Technology, 100(3), 146(1998)
14 A.Kermanpur, Amin H. Sepehri, S.Ziaei-Rad, Failure analysis of Ti6Al4V gas turbine compressor blades, Engineering Failure Analysis, 15, 1052(2008)

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.