Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 33-36    
  研究论文 本期目录 | 过刊浏览 |
取向电工钢中Goss晶粒生长的取向环境
李阳; 毛卫民
北京科技大学材料学系 新金属材料国家重点实验室  北京 100083
Orientation Environment for Goss Grain Growth in Grain Oriented Electrical Steels
LI Yang;  MAO Weimin
Department of Materials; State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
引用本文:

李阳 毛卫民. 取向电工钢中Goss晶粒生长的取向环境[J]. 材料研究学报, 2010, 24(1): 33-36.
, . Orientation Environment for Goss Grain Growth in Grain Oriented Electrical Steels[J]. Chin J Mater Res, 2010, 24(1): 33-36.

全文: PDF(722 KB)  
摘要: 

将以MnS为主要抑制剂的普通取向电工钢作为实验材料, 检测并分析脱碳样品的宏观织构及脱碳和随后加热至925℃时样品的微观织构, 统计分析了Goss与周围晶粒的取向差分布。根据取向差原理计算了脱碳样品主要织构组分内各取向晶粒的取向差环境。结果表明, 取向电工钢脱碳退火后Goss晶粒与周围晶粒的取向差分布呈现大角度特征, 主要取向差分布范围为30o--45o, 而非Goss晶粒与周围晶粒的取向差分布则呈现更多小角度特征。二次再结晶后, Goss晶粒与周围晶粒的取向差分布仍然以大角度特征为主。

关键词 金属材料 取向电工钢 取向差分布 Goss晶粒    
Abstract

Macro-texture of decarburized specimens of conventional grain oriented electrical steels with MnS particles as inhibitors was determined by XRD technology. The microscopic texture and misorientation distribution between Goss grains and the other surrounding grains were analyzed after the decarburized specimens were heated up to 925 . The misorientation environment for different oriented grains of primary texture in the decarburized specimen was calculated based on the misorientation principles. Both experimental observations and theoretical calculations indicated the high angle characteristics of the misorientation between Goss grains and the surrounding grains, especially in the angle range of 30o to 45o. However, low angle misorientation was more emphasized arround non-Goss grains. Goss grains are still mainly surrounded by high angle gain boundaries after secondary recrystallization.

Key wordsmetallic material     grain oriented electrical steel    misorientation distribution    Goss grain
收稿日期: 2009-07-29     
基金资助:

国家自然科学基金50871015资助项目。

1 P.Lin, G.Palumbo, J.Harase, K.T.Aust, Coincidence site lattice (CSL) grain boundaries and Goss texture development Fe-3% Si alloy, Acta Mater., 44(12), 4677(1996) 2 Y.Yoshitomi, K.Iwayama, T.Nagashima, J.Harase, N.Takahashi, Coincidence grain boundary and role of inhibitor for secondary recrystallization in Fe-3% Si alloy, Acta Metal. Mater., 41(5), 1577(1994) 3 P.Gangli, J.A.Szpunar, The role of 5 coincidence boundaries in the growth selection of Fe-3%Si, Journal of Materials Processing Technology, 47(1-2), 167(1994) 4 MAO Weimin, Structure Principles of Crystalline Materials (Beijing, Metallurgical Industry Press, 2007) p.161 (毛卫民,  材料的晶体结构原理  (北京, 冶金工业出版社, 2007) p.161) 5 Y.Hayakawa, J.A.Szpunar, A new model of Goss texture development during secondary recrystallization of electrical steel, Acta Mater., 45(11), 4713(1997) 6 Y.Hayakawa, J.A.Szpunar, The role of grain boundary character distribution in secondary recrystallization of electrical steels, Acta Mater., 45(3), 1285(1997) 7 N.Rajmohan, J.A.Szpunar, An analytical method for characterizing grain boundaries around growing Goss grains during secondary recrystallization, Scripta Mater., 44(10), 2387(2001) 8 W.P.Sun, M.Militzer, J.J.Jonas, Stran-induced nucleation of MnS in electrical steels, Metall. Trans. A, 23(3), 821(1992) 9 T.Takamiya, M.Kurosawa, M.Komatsubara, Effect of hydrogen content in the final annealing atmosphere on secondary recrystallization of grain-oriented Si steel, Journal of Magnetism and Magnetic Materials, 254-255, 334(2003) 10 MAOWeimin, Crystal Texture and Anisotropy of Metallic Materials (Beijing, Science Press, 2002) p.118 (毛卫民,  金属材料的晶体学织构与各向异性  (北京, 科学出版社, 2002) p.118) 11 J.Park, J.A.Szpunar, Evolution of recrystallization texture in nonoriented electrical steels, Acta Mater., 51(11), 3037(2003) 12 D.Dorner, S.Zaefferer, D.Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe-3%Si single crystal, Acta Mater., 55(7), 2519(2007)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.