Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 10-16    
  研究论文 本期目录 | 过刊浏览 |
高温钛合金Ti--60粉末的制备和表征
李少强;  刘建荣; 王清江; 闫伟; 李玉兰;  杨锐
中国科学院金属研究所 沈阳 110016
Preparation and Characterization of High Temperature Titanium Alloy Ti–60 Powders
LI Shaoqiang; LIU Jianrong; WANG Qingjiang; YAN Wei; LI Yulan; YANG Rui
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

李少强 刘建荣 王清江 闫伟 李玉兰 杨锐. 高温钛合金Ti--60粉末的制备和表征[J]. 材料研究学报, 2010, 24(1): 10-16.
. Preparation and Characterization of High Temperature Titanium Alloy Ti–60 Powders[J]. Chin J Mater Res, 2010, 24(1): 10-16.

全文: PDF(1363 KB)  
摘要: 

采用感应熔炼气体雾化法制备了掺杂稀土Nd的高温钛合金Ti--60粉末。 结果表明, 在制备过程中合金元素几乎没有烧损, 增氧量小于100×10-6; 粉末的平均粒度(d50)约为100 μm, 满足正态分布, 雾化气体的压力增大则粉末的粒度减小; 粉末的形貌大多呈球形, 只有少量的形状不规则; 部分粉末是空心的, 其比例随着粉末粒度的增加而增大; 粉末表面有明显的凝固特征, 具有清晰的二次枝晶; 随着Nd含量的增加, 粉末表面富Nd稀土相的析出增加; 粉末由针状 α' 马氏体组织构成, 当真空退火温度超过700℃时马氏体开始微量分解, 当温度升高到850℃时马氏体大量分解。

关键词 金属材料  高温钛合金 气体雾化 Ti--60粉末 粒度分布 表观形貌 空心粉末 α′马氏体分解    
Abstract

The high temperature titanium alloy Ti–60 powder was prepared by Electrode Induction Melting Gas Atomization (EIGA) method. The variation in chemistry between nominal composition and powder was minimal and the increment of oxygen during gas atomization was less than 100×10−6, which insured the alloy composition and purity of the powder. The powder size distribution followed Gaussian distribution and the medium diameter (d50) was about 100 μm, which was decreased with the increasing of argon gas pressure during atomization process. The powder was nearly spherical and some powder particles were irregular. Some powders were hollow and the percentage of the hollow powder increased with the increase of powder diameter. The powder surface showed an obvious characteristic of solidification with distinct secondary dendrite and the rich–neodymium phase became apparent with the increase of neodymium content. The powder microstructure was composed of α martensite phase formed upon the high rate solidification process, which decomposed at 700oC  micro–contently and at 850oC heavily.

Key wordsgas atomization, Ti-60 powder, power size distribution, hollow powder, secondary dendrite, α&prime    martensite decomposition
收稿日期: 2009-06-12     
基金资助:

国家高技术研究发展计划2007AA03A224资助项目。

1 F.H.Froes, S.J.Mashl, V.S.Moxson, V.A.Duz, The technologies of titanium powder metallurgy, JOM, 56(11), 46(2004) 2 V.S.Moxson, O.N.Senkov, F.H.Froes, Innovations in titanium powder processing, JOM, 52(5), 24(2000) 3 F.G.Arcella, F.H.Froes, Producing titanium aerospace components from powder using laser forming, JOM, 52(5), 28(2000) 4 M.Hagiwara, S.Emura, Blended elemental P/M synthesis and property evaluation of Ti–1100 alloy, Mater. Sci. Eng., A352(8), 85(2000) 5 C.Suryanarayana, F.H.Froes, R.G.Rowe, Rapid solidification processing of titanium–alloys, Int. Mater. Rev., 36(3), 85(1991) 6 G.Wegmann, R.Gerling, F.P.Schimansky, Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders, Acta Mater., 51(3), 741(2003) 7 ZONG Bin, WEI Jianzhong, WANG Guohong, Preparation method of metallographic specimens of metal powder, Physical Testing and Chemical Analysis, Part A: Phys. Test., 41(4), 210(2005) (宗 斌, 魏建忠, 王国红, 金属粉末金相样品的制备方法, 理化检验--物理分册,  41(4), 210(2005)) 8 LI Suping, MAO Xiemin, LIANG Hongyu, HU Zhiheng, Effect of rapid solidification and atomization technology on morphology and size distribution of aluminum alloy powders, Foundry Technology, 26(4), 264(2005) (李素萍, 毛协民, 梁红玉, 胡志恒, 快速凝固雾化工艺对铝合金粉末形貌和粒度分布的影响, 铸造技术, 26(4), 264(2005)) 9 HAN Fenglin, MA Fukang, CAO Yongjia, CMEC–Powder Metallurgy Engineering of Materials, The 1st edition, (Beijing, Chemical Industry Press, 2006) p.78 (韩凤麟, 马福康, 曹勇家, 中国材料工程大典--粉末冶金材料工程, 第一版, (北京, 化学工业出版社, 2006) p.78) 10 T.E.MILES, J.F RHODES, Unique powder processing for ultimate shape and properties, in: Rapid Solidification Processing: Principles and Technologies; Proceedings of the international Conference, edited by Rober, Mehrabian, B.H.Kear, M.Cohen (Baton Rouge, Claitor' s Pub, 1978) p.347
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.