Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 610-615    
  研究论文 本期目录 | 过刊浏览 |
Cr颗粒含量对Ni--Cr纳米复合镀层组织结构的影响
张艳1;2;   彭晓2;  王福会2
1.沈阳工业大学理学院 沈阳 110023
2.中国科学院金属研究所 沈阳 110016
Effect of Cr particle contents on microstructure of the electrodeposied Ni--Cr nanocomposite\
ZHANG Yan 1;2; PENG Xiao 2 ; WANG Fuhui2
1.School of Science; Shenyang Univesity of Technology; Shenyang 110023
2.Insititute of Metal Research; Chinese Academy of Science; Shenyang 110016
引用本文:

张艳 彭晓 王福会. Cr颗粒含量对Ni--Cr纳米复合镀层组织结构的影响[J]. 材料研究学报, 2009, 23(6): 610-615.
. Effect of Cr particle contents on microstructure of the electrodeposied Ni--Cr nanocomposite\[J]. Chin J Mater Res, 2009, 23(6): 610-615.

全文: PDF(1020 KB)  
摘要: 

使用Ni与纳米Cr颗粒共沉积方法制备Ni--Cr纳米复合镀层, 研究了镀液中Cr颗粒浓度、搅拌强度和阴极电流密度等工艺参数对镀层中沉积Cr量的影响. 结果表明: 镀层中纳米Cr颗粒的复合改变了电沉积Ni的生长方向, Ni晶粒由原来沿(200)晶面取向生长, 转变为沿(200)、(111)和(220)晶面均匀生长. 镀层中Cr复合量越多, Ni晶粒的形核位置越多, Ni晶粒越细化. 也探讨了Ni--Cr纳米复合镀的沉积机理.

关键词 复合材料  复合电镀 Ni--Cr纳米复合镀层 组织结构    
Abstract

Novel Ni--Cr nanocomposite coatings were fabricated by composite electrodeposition of Ni and Cr nanoparticles from a nickel sulfate bath. The influence of the Cr contents in nanocomposite film was investigated by changing Cr concentration in electrolyte bath, agitation rate and current density. Surface morphologies and microstructure of Ni--Cr coatings were observed by means of SEM / EDAX, TEM and XRD. It was found that the codeposition of Cr nanoparticles disturbed the crystal growth of the nickel matrix, leading to a change from the preferential Ni on (200) planes to the homogeneous growth on (200), (111) and (220) planes. This demonstrated that the nanoparticles codeposition promoted the nucleation of new nickel grains. The more the content of the Cr nanoparticles codeposited, the finer the
electrodeposited Ni matrix. Meanwhile, the electrodeposition mechanism of the Ni--Cr nanocomposite system was discussed.

Key wordscomposites    composite electrodeposition    Ni–Cr nanocomposite film    microstructure
收稿日期: 2009-02-18     
ZTFLH: 

TB331

 
基金资助:

国家自然科学基金50571108资助项目.

1 M.Marco, Electrodeposite of composites: an expanding subject in electrochemical materials science, 45, 3397(2000)
2 LI Weidong, HU Weihua, FENG Xiangming, Study of Ni–nano–TiO2 composite electrodeposition processes, J. Wuhan Univ., 48(6), 679(2002)
(李卫东, 胡卫华, 冯祥明, Ni--纳米TiO2微粒复合电沉积研究, 武汉大学学报,  48(6),679(2002))
3 C.Suryanarayana, Nanocrystalline materials, Inter.Mater. Rev., 40, 41(1995)
4 L.Benea, P.L.Bonora, Wear corrosion properties of nano–structured SiC–nickel composite coatings obtained by electroplating,
Wear, 249, 995(2002)
5 X.Peng, D.Ping, T.Li, W.Wu, Oxidation behavior of a Ni–La2O3 codeposited film on nickel, J. electrochem. Soc., 145, 389(1998)
6 I.Garcia, A.Conde, G.Langelaan, Improved corrosion resistance through microstructural modifications induced by codepositing SiC–particles with electrolytic nickel, Corros. Sci., 45, 1173 (2003)
7 Y.Zhang, X.Peng, F.Wang, Development and oxidation at 800  of a novel electrodeposited Ni–Cr nanocomposite film, Mater. Lett., 58, 1134(2004)
8 G.Wu, K.Mitsuo, Electrodeposited Co–Ni–Al2O3 composite coatings. Surf. Coat. Technol., 17, 157(2004)

9 H.Hayashi, I.Tari, Codeposition of α–alumina particles from acid copper sulfate bath, J. Electrochem. Soc., 140, 362(1993)
10 B.Muller, H.Ferkel, Al2O3–nanoparticle distribution in plated nickel composite films, Nanstructured Materials, 10(8), 1285(1998)
11 W.W.Sandra, Electrochemical study of SiC particle occlusion during nickel electrodeposition, J. Electrochem. Soc., 140, 2235(1993)
12 J.Foster, B.Cameron, The effect of current density and agitation on the formation of electrodeposited composite coatings, Trans. IMF., 54, 178(1976)
13 C.S.Lin, C.H.Chen, Properties and microstructure of nickel electrodeposited from a sulfate bath containing ammonium ions, J. Appl. Electrochem., 31, 925(2001)
14 N.Guglielmi, Kinetics of the deposition on inert particles from electrolytic baths, J. Electrochem. Soc., 119, 1009(1972)
15 J.P.Celis, J.R.Roos, Kinetics of the deposition of alumina particles from copper sulfate plating baths, J. Elechochem.Soc., 124, 1508(1977)
16 B.J.Hwang, C.S.Hwang, Mechanism of codeposition of silicon carbide with electrolytic cobalt, J. Electrochem. Soc., 140, 979(1993)
17 R.Narayan, B.H.Narayana, Electrodeposited chromium–graphite composite coatings, J. Electrochem. Soc., 128, 1704(1981)

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.