Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (5): 550-556    
  研究论文 本期目录 | 过刊浏览 |
热暴露影响欠时效Al--Cu--Mg--Ag合金组织和性能的数值模拟
侯延辉1;2;3; 刘志义1;2; 夏卿坤1;2; 李云涛1;2; 刘延斌1;2
1.中南大学有色金属材料科学与工程教育部重点实验室 长沙 410083
2.中南大学材料科学与工程学院 长沙 410083
3.西南交通大学力学与工程学院 成都 610031
Simulation of thermal exposure effect on under–aged Al–Cu–Mg–Ag alloys
HOU Yanhui 1;2;3 ; LIU Zhiyi 1;2 ;  XIA Qingkun1;2 ; LI Yuntao1;2; LIU Yanbin 1;2
1.Key Laboratory of Nonferrous Metal Materials Science and Engineering; Ministry of Education; Central South University; Changsha 410083
2.School of Materials Science and Engineering; Central South University; Changsha 410083
3.School of Mechanics and Engineering; Southwest Jiaotong University; Chengdu 610031
引用本文:

侯延辉 刘志义 夏卿坤 李云涛 刘延斌. 热暴露影响欠时效Al--Cu--Mg--Ag合金组织和性能的数值模拟[J]. 材料研究学报, 2009, 23(5): 550-556.
, , , , . Simulation of thermal exposure effect on under–aged Al–Cu–Mg–Ag alloys[J]. Chin J Mater Res, 2009, 23(5): 550-556.

全文: PDF(1232 KB)  
摘要: 

通过模型预测和对实验结果的拟合, 建立了Ω析出相与基体的界面能模型. 在此基础上, 根据伪二元假设和经典形核和长大理论, 建立了动力学析出物理模型, 预测欠时效态高Cu/Mg比Al--Cu--Mg--Ag合金在热暴露过程中析出相的演变和拉伸屈服强度. 在165℃欠时效处理2 h的Al--Cu--Mg--Ag合金在不同温度(150--250℃) 热暴露不同时间(0--1000 h)后, 对其析出相组织和拉伸性能进行实验验证. 结果表明, 预测结果与实验结果吻合较好, 验证了模型的可靠性.

关键词 金属材料 欠时效 热暴露 显微组织 强化    
Abstract

A model for the interfacial energy between the Ω–phase precipitation and matrix was established by both the model prediction and experimental result fitting. Based on the pseudo–binary assumption and classical nucleation and growth theories, a physical model for thermodynamic precipitation was also developed, and by which, the microstructural evolution and tension yield strength of the underaged Al–Cu–Mg–Ag alloy were predicted. The results indicated that the results predicted are in good agreement with the experimental data.

Key wordsmetallic materials    under–aged    thermal exposure    microstructure    strengthen
收稿日期: 2008-11-28     
ZTFLH: 

TG146

 
基金资助:

家重点基础研究发展项目2005CB623705--04和教育部中南大学国内博士研究生访学项目1810-752300020.

1 Y.G.Li, P.A.Blenkinsop, M.H.Loretto, N.A.Walker, Structure and stability of precipitates in 500  exposed Ti–25V–15Cr–xAl alloys, Acta Mater., 46, 5777(1998) 2 O.Rios, S.Goyel, M.S.Kesler, D.M.Cupid, H.J.Seifert, F.Ebrahimi, An evaluation of high–temperature phase stability in the Ti–Al–Nb system, Scripta Materialia, 60, 156(2008) 3 M.Thomas, T.Lindley, M.Jackson, The microstructural response of a peened near–α titanium alloy to thermal exposure, Scripta Materialia, 60, 108(2008) 4 Y.B.Liu, Z.Y.Liu, Y.T.Li, Q.K.Xia, J.Zhou, Enhanced fatigue crack propagation resistance of an Al–Cu–Mg alloy by artificial aging, Mater. Sci. Eng. A, 492, 333(2008) 5 C.R.Hutchinson, X.Fan, S.J.Pennycook, G.J.Shiflet, On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys, Acta Materialia, 49, 2827(2001) 6 S.P.Ringer, W.Yeung, B.C.Muddle, I.J.Polmear, Precipitate stability in Al–Cu–Mg–Ag alloys aged at high temperatures, Acta Metall. Mater., 42, 1715(1994) 7 K.Hono, N.Sano, S.S.Babu, R.Okano, T.Sakurai, Characterization of the precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys, Acta Metall. Mater., 41, 829(1993) 8 M.Murayama, K.Hono, Pre–precipitate clusters and precipitation processes in Al–Mg–Si alloys, Scripta Mater., 38, 1315(1998) 9 L.Reich, M.Murayama, K.Hono, Evolution of Ω phase in an Al–Cu–Mg–Ag alloy–a three–dimensional atom probe study, Acta Mater., 46, 6053(1998) 10 S.P.Ringer, I.J.Polmear, T.Sakurai, Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+ S phase field, Mater. Sci. Eng. A, 217, 273(1996) 11 R.Ferragut, A.Dupasquier, C.E.Macchi, Vacancy–solute interactions during multiple–step ageing of an Al–Cu–Mg– Ag alloy, Scripta Mater., 60, 137(2009) 12 R.Kampmann, R.Wagner, Phase Transformations in Materials, Mater. Sci. Technol., 5, 213(1991) 13 M.Volmer, A.Z.Weber, Keimbildung inubersattigten gebilden, Phys. Chem., 119, 277(1926) 14 K.C.Russell, Nucleation in solids: the induction and steady state effects, Adv. Colloid Interface Sci., 13, 205(1980) 15 C.Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20, 95(1949) 16 H.B.Aaron, D.Fainstain, G.R.Kotler, Diffusion–limited phase transformations: A comparison and critical evaluation of the mathematical approximations, J. Appl. Phys., 41, 4404(1970) 17 A.Deschamps, Y.Brechet, Influence of predeformation and ageing of an Al–Zn–Mg alloy–II. Modeling of precipitation kinetics, Acta Mater., 47, 293(1999) 18 I.M.Lifshitz, V.V.Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35(1961) 19 LIU Gang, DING Xiangdong, SUN Jun, CHEN Kanghua, A model for age strengthening of plate–like–precipitate–containing Al alloys, The Chinese Journal of Nonferrous Metals, 11(3), 6(2001) (刘 刚, 丁向东, 孙军, 陈康华, 具有盘状析出相铝合金的时效强化模型, 中国有色金属学报,  11(3), 6(2001)) 20 C.Genevois, A.Deschamps, A.Denquin, B.D.Cottignies, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Mater., 53, 2447(2005) 21 E.Nembach, Particle strengthening of metals and alloys, Acta Mater., 40, 3325(1992) 22 F.King, Aluminum and Its Alloys (Chichester, Ellis Horwood Limited, 1987) 23 M.Beyeler, M.Maurice, R.Seguin, Contribution to the study of hetero–diffusion in aluminium, Mem. Sci. Rev. Metall., 67, 295(1970) 24 J.D.Boyd, R.B.Nicholson, The coarsening behavior of theta double prime and theta prime precipitates in two Al–Cu alloys, Acta Mater., 19, 1101(1971) 25 H.Hargarter, M.T.Lyttle, E.A.Starke, Effects of preferentially aligned precipitates on plastic anisotropy in Al–Cu– Mg–Ag and Al–Cu alloys, Mater. Sci. Eng. A., 257, 87(1998) 26 LIU Gang, ZHANG Guojun, DING Xiangdong, SUN Jun, CHEN Kanghua, A model for age strengthening of Al alloys with plate/disc–like or rod/needle–like precipitate, Rare Metal Materials and Engineering, 32(12), 971(2003) (刘  刚, 张国君, 丁向东, 孙  军, 陈康华, 具有盘/片状, 棒/针状析出相铝合金的时效--屈服强度变化模型, 稀有金属材料与工程,  32(12), 971(2003)) 27 P.M.Kelly, The effect of particle shape on dispersion hardening, Scripta Metall., 6, 647(1972) 28 I.N.Khan, M.J.Starink, J.L.Yan, A model for precipitation kinetics and hardening in Al–Cu–Mg alloys, Mater. Sci. Eng. A, 472, 66(2007) 29 M.Perez, A.Deschamps, Microscopic modelling of simultaneous two–phase precipitation: application to carbide precipitation in low–carbon steels, Mater. Sci. Eng. A, 360, 214(2003) 30 Q.Li, R.N.Shenoy, DSC and TEM characterizations of thermal stability of an Al–Cu–Mg–Ag alloy, J. Mater. Sci., 32, 3401(1997) 31 M.J.Starink, P.J.Gregson, A quantitative interpretation of DSC experiments on quenched and aged SiCp reinforced 8090 alloys, Scripta Metall. Mater., 33, 893(1995)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.