Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (5): 529-533    
  研究论文 本期目录 | 过刊浏览 |
在高速电镀锌钢板表面磁控溅射铝镁合金
顾训雷1; 单玉桥1; 刘常升1;  于晓中2
1.东北大学材料各向异性与结构工程教育部重点实验室 沈阳 110004
2.东北大学金属防护中心 沈阳 110004
Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel
GU Xunlei1; SHAN Yuqiao1; LIU Changsheng1; YU Xiaozhong2
1.Key Laboratory for Anisotropy and Texture of Materials; Ministry of Education; Northeastern University; Shenyang 110004
2.Metal Protection Center of Northeastern University; Shenyang 110004
引用本文:

顾训雷 单玉桥 刘常升 于晓中. 在高速电镀锌钢板表面磁控溅射铝镁合金[J]. 材料研究学报, 2009, 23(5): 529-533.
, , . Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel[J]. Chin J Mater Res, 2009, 23(5): 529-533.

全文: PDF(1037 KB)  
摘要: 

采用双靶直流磁控溅射工艺, 在高速电镀锌基片上制备了铝镁合金镀层. 用SEM、EDS和XRD方法分析了镀层的形貌和组分, 借助电化学试验和中性盐雾(NSS)试验研究了靶功率和衬底温度对镀层耐蚀性的影响. 结果表明: 随着衬底温度升高, 镀层趋于致密, 但球状颗粒增多, 自腐蚀电流密度略有增加; 铝靶的功率为900 W, 镁靶的功率为200 W, 衬底温度为150℃时镀层的耐蚀性最优, 自腐蚀电流密度约为4 μAcm-2, 耐中性盐雾时间为120 h, 经分析, 镀层组分主要为Al12Mg17.

关键词 材料失效与保护 铝镁合金镀层 腐蚀电化学 耐蚀性 磁控溅射    
Abstract

The Al–Mg alloy coatings were deposited on high-speed electro-galvanizing steel by double-target DC magnetron sputtering process. The morphologies and compositions were analyzed, and the influences of target power and substrate temperature on corrosion-resistance properties were investigated by electrochemical measurement and neutral salt spray test. The results show that the coatings
distribute dense with increasing the substrate temperature, but excessively high temperature cause more granular particles and slightly higher corrosion current density. The optimal corrosion-resistance properties can be achieved by synthetic adjustment of target power and substrate temperature. The corrosion current density is approximately 4 μAcm−2 and anti–salt spray time is 120 h. The structure of coatings is determined to be Al12Mg17.

Key wordsmaterial failure and protection    Al-Mg alloy coatings    corrosion electrochemistry    corrosion-resistance property    magnetron sputtering
收稿日期: 2009-02-17     
ZTFLH: 

TG174

 
基金资助:

长江学者和创新团队发展计划资助项目IRT0713.

1 B.A.Shedden, M.Samandi, B.Window, Stoichiometry of unbalanced magnetron sputtered Al-Mg alloy coatings, Surf. Coat. Technol., 97, 557(1997)
2 B.Enders, H.Martin, G.K.Wolf, Corrosion and wear properties of multipurpose coatings deposited by ion-beamassisted deposition, Surf. Coat. Technol., 60, 556(1993)
3 P.J.Kelly, R.D.Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56, 159(2000)
4 R.D.Arnell, R.Bates, The deposition of highly supersaturated metastable aluminium-magnesium alloys by unbalanced magnetron sputtering from composite targets, Vacuum, 43(1-2), 105(1992)
5 K.R.Baldwin, R.I.Bates, R.D.Arnell, C.J.E.Smith, Aluminium-magnesium alloys as corrosion resistant coatings for steel, Corros. Sci., 38(1), 155(1996)
6 R.I.Bates, R.D.Arnell, Microstructure of novel corrosionresistant coatings for steel components by unbalanced magnetron sputtering, Surf. Coat. Technol., 89, 204(1997)
7 K.L.Moore, J.M.Sykes, S.C.Hogg, P.S.Grant, Pitting corrosion of spray formed Al-Li-Mg alloys, Corros. Sci., 50, 3221(2008)
8 John A.Thornton, The microstructure of sputterdeposited coatings, J. Vac. Sci. Technol. A, 4(6), 3059(1986)
9 O.Lunder, J.E.Lein, T.Kr.Aune, K.Nisancioglu, The role of Mg17Al12–phase in the corrosion of Mg alloy AZ91, Corrosion, 45(9), 741(1989)
10 Zhao Mingchun, Liu Ming, Song Guangling, A.Atrens, Influence of the β–phase morphology on the corrosion of the Mg alloy AZ91, Corros. Sci., 50, 1939(2008)
11 K.L.Moore, J.M.Sykes, S.C.Hogg, P.S.Grant, Pitting corrosion of spray formed Al–Li–Mg alloys, Corros. Sci., 50, 3221(2008)

 

[1] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] 廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[5] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[6] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[7] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[8] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[9] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[10] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[11] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[12] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[13] 杨雅娜, 陈文革, 薛元琳. 碳纤维表面溅射金属增强铜基复合材料的界面结合[J]. 材料研究学报, 2021, 35(6): 467-473.
[14] 张泽灵, 王世琦, 徐邦利, 赵昱皓, 张旭海, 方峰. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能[J]. 材料研究学报, 2021, 35(3): 193-200.
[15] 郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.