Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (5): 495-499    
  研究论文 本期目录 | 过刊浏览 |
用高能球磨法制备的细晶Al--50Si合金的组织与性能
王菲;  蔡辉;  王亚平
西安交通大学理学院~物质非平衡合成与调控教育部重点实验室 西安 710049
The microstructure and properties of fine crystalline Al–50Si alloy prepared by high–energy ball milling
WANG Fei;  CAI Hui WANG;  Yaping
Supported by National Natural Science Foundation of China No. 50871078 and New Century Excellent Talents Project of Ministry of Education No.NCET–07–0679.
引用本文:

王菲 蔡辉 王亚平. 用高能球磨法制备的细晶Al--50Si合金的组织与性能[J]. 材料研究学报, 2009, 23(5): 495-499.
. The microstructure and properties of fine crystalline Al–50Si alloy prepared by high–energy ball milling[J]. Chin J Mater Res, 2009, 23(5): 495-499.

全文: PDF(868 KB)  
摘要: 

用高能球磨工艺制备Al--50Si合金粉末, 将粉末经冷压、烧结、热压等工艺制备出Al--50Si合金块体材料, 对球磨粉末和块体样品进行了显微组织观察、EDS分析和XRD分析, 测定了块体样品的密度、硬度和热扩散系数. 结果表明: 高能球磨后Al--50Si合金粉末的硅粒子明显细化, 其尺寸分布为1--15 μm; 在烧结过程中块体样品的硅粒子长大, 其尺寸增大到5--30 μm; Al--50Si合金块体材料具有较高的密度和硬度, 其室温热扩散系数为55 mm2 ?s-1.

关键词 金属材料细晶Al--Si合金高能球磨电子封装    
Abstract

High–energy ball milling and powder metallurgy process were applied to Al–Si powder to obtain Al–50Si composite. The microstructure and phases of the powder and alloy were investigated. And the density, hardness and TDC (thermal diffusivity coefficient) of the alloy were tested. The results show that Si particles were refined during high–energy ball milling process. The diameter of Si particles in the ball milled powder was between 1–15 μm. The diameter of Si particles in the consolidated alloy increased to 5–30 μm. The TDC of the alloy was 55 mm2·s−1 at room temperature.

Key wordsmetallic materials    fine crystalline    Al–Si alloy    high–energy ball milling    electronic packaging
收稿日期: 2009-04-02     
ZTFLH: 

TG146

 
基金资助:

国家自然科学基金50871078和教育部新世纪优秀人才支持计划NCET--07--0679资助项目.

1 D.M.Jacobson, S.P.S.Sangha, A novel lightweight microwave packaging technology, IEEE Trans. CPMT (A), 21(3), 515(1998)
2 Carl Zweben, Advances in composite materials for thermal management in electronic packaging, JOM, 50(6), 47(1998)
3 Carl Zweben, Metal–matrix composites for electronic packing, JOM, 44(7), 15(1992)
4 CAI Yang, ZHENG Ziqiao, LI Shichen, FENG Xi, The technique and mechanism to fabricate lightweight Si–Al composites for electronic packaging, Powder Metallurgy Technology, 22(3), 168(2004)
(蔡 杨, 郑子樵, 李世晨, 冯 曦, 轻质Si--Al电子封装材料制备工艺的研究, 粉末冶金技术,  22(3), 168--172(2004))
5 YANG Fuliang, GAN Weiping, CHEN Zhaoke, A few preparation methods and their delication mechanism for high–silicon aluminum alloy, Materials Review, 19(5), 42(2005)
(杨伏良,甘卫平,陈招科, 高硅铝合金几种常见制备方法及其细化机理, 材料导报,  19(5), 42(2005))
6 ZHANG Henghua, DUAN Haili, SHAO Guangjie, XU Luoping, Microstructure and mechanical properties of hypereutectic
Al–Si alloy modified with Cu–P, Rare Metals, 27(1), 59(2008)
7 H.G.Jeong, D.J.Yoon, E.Z.Kim, H.J.Park, K.H.Na, The influence by hydrostatic extrusion on the microstructure and extrudability of the IM processed hypereutectic Al–Si–X alloys, Journal of Materials Processing Technology, 130–131, 438(2002)
8 LIN Feng, FENG Xi, LI Shichen, REN Xianjing, JIA Xianshang, Research on high performance novel electronic packaging materials of silicon–based aluminum, Materials Review, 20(3), 107(2006)
(林 锋, 冯  曦, 李世晨, 任先京, 贾贤赏, 新型硅基铝金属高性能电子封装复合材料研究, 材料导报,  20(3), 107(2006))
9 Y.Y.Chen, D.D.L.Chung, Silicon–aluminium network composites fabricated by liquid metal infiltration, Journal of Material Science, 29(23), 6069(1994)
10 C.W.Chien, S.L.Lee, J.C.Lin, M.T.Jahn, Effects of Sip size and volume fraction on properties of Al/Sip composites, Material Letters, 52(4–5), 334(2002)
11 YANG Fuliang, GAN Weiping, CHEN Zhaoke, LIU Hong, Microstructures and mechanical properties of high–silicon aluminum alloy fabricated by rapid solidification/powder metallurgy, The Chinese Journal of Nonferrous Metals, 14(10), 1717(2004)
(杨伏良, 甘卫平, 陈招科, 刘 泓, 快速凝固/粉末冶金制备高硅铝合金材料的组织与力学性能, 中国有色金属学报,  14(10), 1717(2004))
12 ZHAN Datong, LI Yuanyuan, LUO Zongqiang, QIU Cheng, Hot extrusion process of rapidly solidified hypereutectic aluminum–silicon alloy powder, The Chinese Journal of Nonferrous Metals, 11(1), 6(2001)
(张大童, 李元元, 罗宗强, 邱诚, 快速凝固高硅铝合金粉末的热挤压过程, 中国有色金属学报,  11(1), 6(2001))
13 D.M.Jacobson, A.J.W.Ogilvy, Spray–deposited Al–Si (Osprey CE) alloys and their properties, Material Wissenschaft und Werkstofftechnik, 34(4), 381(2003)
14 Feng Wang, Baiqing Xiong, Yonggan Zhang, Baohong Zhu, Hongwei Liu, Yanguang Wei, Microstructure, thermo–physical and mechanical properties of spray– deposited Si–30Al alloy for electronic packaging application, Materials Characterization, 59, 1455(2008)
15 TIAN Chong, CHEN Guiyun, YANG Lin, ZHAO Jiuzhou, Microstructures and properties of Si–Al alloy for electronic packaging prepared by spray deposition technique, Journal of Functional Materials and Devices, 12(1), 54(2006)
(田 冲, 陈桂云, 杨 林, 赵九洲, 喷射沉积硅铝电子封装材料的组织与性能, 功能材料与器件学报,  12(1), 54(2006))
16 Jung–II Lee, Tae–Whan Hong, II–Ho Kim, Soon–Chul Ur, Young–Geun Lee, Sung–Lim Ryu, Syntheses and evaluations of microstructure properties on Al–(50,60,70 mass%)Si systems by mechanical alloying, Material Science Forum, 449(4), 249(2004)
17 Li Yuanyuan, ZHANG Datong, XIAO Zhiyu, Influence of high–energy ball milling on Al–30Si powder and ceramic particulate, Transactions of Nonferrous Metals Society of China, 10(3), 324(2000)
18 YANG Fuliang, YI Danqing, High–energy ball milling and characterization of Al–Si alloy powders, J. Cent. South Univ. (Science and Technology), 39(1), 29(2008)
(杨伏良, 易丹青, Al--Si合金粉末的高能球磨及其表征, 中南大学学报,  39(1), 29(2008)
19 Barin Ihsan, translated by CHENG Nailiang, NIU Sitong, XU Guiying, Thermochemical Data of Pure Substances (Beijing, Science Press, 2003) p.17–1480
(伊赫桑, 巴伦主编, 程乃良, 牛四通, 徐桂英译,  纯物质热化学数据手册 (北京, 科学出版社, 2003) p.17--1480)
20 QIU Chengjun, WANG Yuanhua, WANG Yijie, Material Physical Properties (Harbin, Harbin Industry University Press, 2003) p.2–42
(邱成军, 王元化, 王义杰, 材料物理性能(哈尔滨, 哈尔滨工业大学出版社, 2003) p.2--42)
21 ZHANG Jishan, New spray formed light weighted Si–Al electronic packaging materials with low thermal expansion and high heat conducing, Materials Review, 16(9), 1(2009)
(张济山, 新型喷射成形轻质、高导热、低膨胀Si--Al电子封装材料, 材料导报,  16(9), 1(2002))

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.