Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 437-443    
  研究论文 本期目录 | 过刊浏览 |
液态金属冷却工艺对NiAl--Cr(Mo)--Hf(Ho)定向合金组织的影响
肖旋1; 郭建亭2; 刘阳1; 赵海涛1
1.沈阳理工大学 沈阳 110168
2.中国科学院金属研究所 沈阳 110016
Effect of liquid metal cooling on microstructures of directionally solidified NiAl–Cr(Mo)–Hf(Ho) alloy
Xiao Xuan1;   Guo Jianting2;   Liu Yang 1;  Zhao Haitao1
1.Shenyang University of Science and Technology; Shenyang 110168
2.Institute of Metal Research; CAS; Shenyang 110016
引用本文:

肖旋 郭建亭 刘阳 赵海涛. 液态金属冷却工艺对NiAl--Cr(Mo)--Hf(Ho)定向合金组织的影响[J]. 材料研究学报, 2009, 23(4): 437-443.
. Effect of liquid metal cooling on microstructures of directionally solidified NiAl–Cr(Mo)–Hf(Ho) alloy[J]. Chin J Mater Res, 2009, 23(4): 437-443.

全文: PDF(1189 KB)  
摘要: 

用液态金属冷却技术(LMC)和传统的定向凝固技术(HRS)制备了名义成分为Ni--33Al--31Cr--2.9Mo--0.1Hf--0.05Ho(%, 原子分数)的定向合金, 研究了制备工艺对其组织的影响. 结果表明, 合金由初生NiAl枝晶、NiAl/Cr(Mo)共晶胞和少量Hf固溶体组成. 与HRS工艺相比, LMC工艺能提高固液前沿温度梯度和冷却速度. 较高的固液前沿温度梯度扩大了NiAl/Cr(Mo)共晶共生区成分范围, 减少初生NiAl枝晶的体积分数. 而较高的冷却速度抑制固溶元素扩散, 细化定向合金的组织, 增加合金中固溶元素总量. 另外, LMC工艺能避免HRS工艺中产生的生长缺陷, 包括斑点、NiAl一次枝晶的偏转和NiAl一次枝晶的不连续.

关键词 金属材料金属间化合物NiAl合金定向凝固工艺液态金属冷却技术显微组织    
Abstract

The alloy with nominal composition Ni–33Al–31Cr–2.9Mo–0.1Hf–0.05Ho (%) has been directionally solidified by liquid metal cooling (LMC) and conventional high rate solidification (HRS) processes. Investigations reveal that the directionally solidified alloys are composed of primary dendritic NiAl, NiAl/Cr(Mo) eutectic cell and Hf solid solution. Compared with the conventional high rate solidification process, the liquid metal cooling process can provide higher thermal gradient and higher cooling rate. Higher thermal gradient widens the composition range of coupled zone and reduces the volume fraction of primary dendritic NiAl. Higher cooling rate restrains the diffusion and results in the refinement of the microstructure and the expansion of total contents of the solid solution elements (except Si) in NiAl and Cr(Mo) phases. In addition, casting defects including freckles, misoriented primary dendritic NiAl grains and discontinuities of primary dendritic NiAl grains decrease or even disappear completely in the directionally solidified alloys processed by liquid metal cooling process.

Key wordsmetallic materials    intermetallics    NiAl alloy    directional solidification    liquid metal cooling technique    microstructure
收稿日期: 2009-04-10     
ZTFLH: 

TG113

 

1 H.E.Cline, J.L.Walter, E.Lifshin, R.R.Russell, Structures, faults and the rode–plate transiton in eutectics, Metall. Trans., 2, 189(1971)
2 H.E.Cline, J.L.Walter, The effect of alloy additions on the rod–plate transition in the eutectic NiAl–Cr, Metall. Trans., 1, 2907(1970)
3 H.E.Cline, J.L.Walter, E.F.Koch, L.M.Osika, The variation of interface dislocation networks with lattice mismatch in eutectic alloy, Acta Metall., 19, 405(1971)
4 D.R.Johnson, X.F.Chen, B.F.Oliver, R.D.Noebe, J.D.Whittenberger, Processing and mechanical properties of in–situ composites from the NiAl–Cr and the NiAl–(Cr, Mo) eutectic systems, Intermetallics, 3, 99(1995)
5 X.F.Chen, D.R.Johnson, R.D.Noebe, B.F.Oliver, Deformation and fracture of a directionally solidified NiAl– 28Cr–6Mo eutectic alloy, J. Mater. Res., 10, 1159(1995)
6 J.M.Yang, S.M.Jeng, K.Bain, R.A.Amato, Microstructure and mechanical behavior of in–situ directional dolidified NiAl–Cr(Mo) eutectic composite, Acta Mater., 45, 295(1997)
7 S.V.Raj, I.E.Locci, Microstructural characterization of a directionally–solidified Ni–33(at.%) Al–31Cr–3Mo eutectic alloy as a function of withdrawal rate, Intermetallics, 9(3), 217(2001)
8 J.D.Whittenberger, S.V.Raj, I.E.Locci, J.A.Salem, Effect of growth rate on elevated temperature plastic flow and room temperature fracture toughness of directionally solidified NiAl–31Cr–3Mo, Intermetallics, 7(10),1159(1999)
9 A.J.Elliott, S.Tin, W.T.King, S.C.Huang, M.F.X.Gigliotti, T.M.Pollock, Directional solidification of large superalloy castings with radiation and liquid–metal cooling: a comparative assessment, Metall. Mater. Trans., 35A, 3221(2004)
10 CUI Chuanyong, GUO Jianting, QI Yihui, YE Hengqiang, Deformation behavior and microstructure of DS NiAl/Cr(Mo)alloy containing Hf, Intermetallics, 10(10), 1001(2002)
11 J.D.Whittenberger, S.V.Raj, I.E.Locci, J.A.Salem, in Structural Intermetallics, Effects of minor alloying additions on the microstructure, toughness and creep strength of directionally solidified NiAl–31Cr–3Mo, edited by K.J.Hemker, D.M.Dimiduk, H.Clemens, R.Darolia, H.Inui, J.M.Larsen, V.K.Sikka, M.Thomas, J.D.Whittenberger(Warrendale, PA, TMS, 2001) p.775
12 A.Misra, A.Gibala, R.d.Noebe, Optimization of toughness and strength in multiphase intermetallics, Intermetallics, 9(10–11), 971(2001)
13 HU Hanqi, Metal Solidification Principle, (Beijing, China Machine Press, 2000) p.168
(胡汉起,  金属凝固原理  (北京, 机械工业出版社, 2000) p.168)
14 A.Karma, A.Sarkissan, Morphological instabilities of lamellar eutectics, Metall. Mater. Trans., 27A, 635(1996)
15 S.Milenkovic, R.Caram, Effect of the growth parameters on the Ni–Ni3Si eutectic microstructure, J. Crystal Growth, 237–239, 95(2002)
16 M.H.Burden, K.A.Hunt, The extent of the eutectic range, J. Crystal Growth, 22(4), 328(1974)
17 S.M.Copley, A.F.Giamei, S.M.Johnson, M.F.Hornbecker, The origin of freckles in unidirectionally solidified castings, Metall. Trans., 1, 2193(1970)
18 T.M.Pollock, W.H.Murphy, The breakdown of single– crystal solidification in high refractory nickel–base alloys, Metall. Trans., 27A, 1081(1996)
19 A.J.Elliott, G.B.Karney, M.F.X.Gigliotti, T.M.Pollock, in Superalloys 2004, Issues in processing by the Liquid–Sn assisted directional solidification techique, edited by K.A. Green, T.M.Pollock, H.Harada, TE. Howson, R.C.Reed, J.J.Schirra, S.Walston(Warrendale, PA, TMS, 2004) p.421

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.