Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (3): 293-299    
  研究论文 本期目录 | 过刊浏览 |
制备方法对W--10\%Ti合金组织性能的影响
王庆相;  范志康;  杨怡
西安理工大学材料科学与工程学院  西安 710048
Effect of preparation methods on microstructure and properties of W--10%Ti alloy
WANG Qingxiang;  FAN Zhikang;  YANG Yi
School of Materials Science and Engineering; Xi'an University of Technology; Xi'an 710048
引用本文:

王庆相 范志康 杨怡 . 制备方法对W--10\%Ti合金组织性能的影响[J]. 材料研究学报, 2009, 23(3): 293-299.
, . Effect of preparation methods on microstructure and properties of W--10%Ti alloy[J]. Chin J Mater Res, 2009, 23(3): 293-299.

全文: PDF(875 KB)  
摘要: 

以高纯钨粉、钛粉和TA2钛片为原料, 分别采用液相烧结法和熔渗法制备了Ti含量为10\%的W--Ti合金; 测量了W--10%Ti合金的密度和杂质(C、N和O)含量, 研究了不同方法制备的W--Ti合金的相组成和微观形貌. 结果表明, 熔渗法制备的W--Ti合金致密度达94%以上, 相结构由含有较多富Ti相的固溶体β(W/Ti)组成;液相烧结的合金致密度为90%左右, 组织相对均匀;两种方法制备的合金杂质(C、N和O)含量均较低. 探讨了液相烧结制备W--10%Ti合金时固溶体扩散形成的机理.

关键词 金属材料W--Ti合金熔渗液相烧结固溶体密度    
Abstract

By using high--purity tungsten powders, titanium powders and TA2 Ti sheet as the raw materials, W--10%Ti alloys were prepared by infiltration and liquid--phase sintering respectively. The density and impurity content of C, N and O in W--10\%Ti alloy were measured. The morphology, composition and microstructure were characterized. The results show that W--10\%Ti alloy prepared by infiltration has a relative density of above 94% and is mainly consisted of Ti--rich $\beta$ solid solution, while the relative density of W--Ti prepared by liquid phase sintering is about 90% and the microstructure is uniform. The W--Ti alloys prepared by both methods have low impurity contents. The formation mechanism of W--10\%Ti alloy by liquid phase sintering was discussed as well.

Key wordsmetallic materials    W--Ti alloy    infiltration    liquid--phase sintering    solid solution    density
收稿日期: 2008-10-15     
ZTFLH: 

TG146

 
基金资助:

国家自然科学基金50834003资助项目.

1 R.J.Gutmann, T.P.Chow, A.E.Kaloyeros, Thermal stability of on–chip copper interconnect structures, Thin Solid Films, 262(1–3), 177(1995)
2 G.Raghavan, C.Chiang, P.B.Anders, Diffusion of copper through dielectric films under bias temperature stress, Thin Solid Films, 262(1–2), 168(1995)
3 A.G.Dirks, R.A.M.Wolters, A.J.M.Nellissen, On the microstructure property relationship of W–Ti–(N) diffusion barriers, Thin Solid Films, 193–194, 201(1990)
4 H.Ramarotafika, G.Lemperiere, Influence of a d.c. substrate bias on the resistivity, composition, crystallite size and microstrain of W–Ti and W–Ti–N films, Thin Solid Films, 266(2), 267(1995)
5 WANG Zanhai, WANG Xingming, CHU Maoyou, Preparation of W–Ti sputtering targets under inert atmosphere, Chinese Journal of Rare Metals, 30(5), 688(2006)
(王赞海, 王星明, 储茂友, 惰性气体热压法制备W/Ti合金靶材研究, 稀有金属,  30(5), 688(2006))
6 C.E.Wickersham, Jr., J.E.Poole, J.J.Mueller, Particle contamination during sputter deposition of W–Ti films, J. Vac. Sci. Technol. A, 10, 1713(1992)
7 Chifung Lo, Paul Gilman, Particle generation in W–Ti deposition, J. Vac. Sci. Technol. A, 17(2), 608(1999)
8 Alireza Nouri, CHEN Xiaobo, YUN Cang, Synthesis of Ti–Sn–Nb alloy by powder metallurgy, Mater. Sci. Eng., A, 485, 562(2008)
9 C.E.Wickersham, Method of producing tungsten–titanium sputter targets and targets produced thereby, United States Patent, 5234487(1993)
10 J.Laszo. Kecskes, Ian W. Hall, Microstructural effects in hot–explosively–consolidated W–Ti alloy, Journal of Materials Processing Technology, 94, 247(1999)
11 A.J.Dunlop, C.E.Waterman, T.Brat, Effects of titanium– tungsten target processing methods on defect generation during very large scale integrated device fabrication, Vac. Sci. Tech. A, 10(2), 305(1992)
12 PAN Jinsheng, TONG Jianmin, TIAN Minbo, Materials Science Foundation (Beijing, Tsinghua University Press, 1998) p.450
(潘金生, 仝健民, 田民波,   材料科学基础 (北京, 清华大学出版社, 1998) p.450)
13 XIE Chengmu, Titanium and Titanium Alloy Casting (Beijing, China Machine Press, 2005) p.14
(谢成木,  钛及钛合金铸造 (北京, 机械工业出版社, 2005) p.14)
14 A.J.Dunlop, Hans Rensing, Method for making tungsten– titanium sputtering targets and product, United States Patent, 4838935 (1989)

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.