Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 187-192    
  研究论文 本期目录 | 过刊浏览 |
SiC晶须与Si3N4颗粒强韧MoSi2复合材料
周宏明1;易丹青2;柳公器2
1.中南大学材料科学与工程学院 长沙 410083
2.中南大学粉末冶金国家重点实验室 长沙410083
MoSi2 composites reinforced by SiC whiskers and Si3N4 particles
ZHOU Hongming1;2 ; YI Danqing1; LIU Gongqi1
1.School of Materials Science and Engineering; Central South University; Hunan Changsha 410083
2.State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083
引用本文:

周宏明 易丹青 柳公器. SiC晶须与Si3N4颗粒强韧MoSi2复合材料[J]. 材料研究学报, 2009, 23(2): 187-192.
, , . MoSi2 composites reinforced by SiC whiskers and Si3N4 particles[J]. Chin J Mater Res, 2009, 23(2): 187-192.

全文: PDF(1141 KB)  
摘要: 

采用湿法混合和热压工艺制备了不同Si3N 4(p)和SiC (w)体积含量的MoSi 2基复合材料, 研究了复合材料的显微组织、晶粒大小、硬度、断裂韧性和抗弯强度. 结果表明, 复合材料的晶粒比纯MoSi 2明显细化, 且随着强化相添加量的增加而减小, 抗弯强度和断裂韧性均大幅度提高, 其中MoSi 2--20%SiC (w) --20%Si 3N 4(p)复合材料具有较好的综合力学性能, 断裂韧性和抗弯强度分别427 MPa和10.4 MPa ? m1/2. 复合材料的强化机制为细晶强化和弥散强化, 韧化机制为细晶韧化和裂纹偏转与分支韧化.

关键词 复合材料MoSi2Si3N4颗粒SiC晶须力学性能    
Abstract

MoSi2 composites with different Si 3N 4(p) and SiC(w) volume contents are prepared by means of wet mixing and heat pressing process. The morphology, grain size, hardness, fracture toughness, bending strength of the MoSi2–Si3N4(p)/SiC(w) composites were investigated by means of scanning electron microscope (SEM), polarizing microscopy, vickers hardness tester, and universal material testing machine in this paper. It is shown that mechanical properties of the prepared composites are much higher than that of MoSi2, and its grain size is finer than that of MoSi2, more over it is declined with the increasing of strengthening phases. MoSi2–20% Si3N4(p)–20% SiC(w) composite has better mechanical properties, and its bending strength and room fracture toughness are 427 MPa and 10.4 MPa·m1/2, respectively. The strengthening mechanism of MoSi2– Si3N4(p)/SiC(w) composites are fine grain strengthening and dispersion strengthening, and the toughening mechanism are fine grain toughening and crack deflection toughening.

Key wordscomposites    MoSi2    Si3N4 particle    SiC whisker    mechanical properties
收稿日期: 2008-08-19     
ZTFLH: 

TB332

 
基金资助:

中国博士后基金20060400261, 中国博士后特别基金200801350和教育部博士点新教师基金200805331062资助项目.

1 Manish Patel, J.Subramanyuam, V.V.Bhanu Prasad, Synthesis and mechanical properties of nanocrystalline MoSi2–SiC composite, Scripta Materialia, 58(3), 211(2008)
2 ZHOU Hongming, YI Danqing, SHI Zhangzhi, Present status of the study on MoSi2-based high termperature structural materials, Materials Review, 20(11), 404(2006)
(周宏明, 易丹青, 石章智, MoSi2基高温结构材料的研究进展, 材料导报, {\bf 20}(11), 404(2006))
3 G.H.Mohan, Development and characterization of SiC(f): MoSi2–Si3N4(p) hybrid composites, Materials Science and Engineering, A261(1–2), 24(1999)
4 ZHANG Xiaoli, LU Zhenlin, JIN Zhihao, Preparation of a MoSi2 –SiCp composite by reactive sintering without pressure, Rare Metal Materials and Engineering, 32(12), 1037(2003)
(张小立, 吕振林, 金志浩, 无压反应烧结制备MoSi2--SiCp复相材料的制备与性能, 稀有金属材料与工程,   32(12), 1037(2003))
5 MA Qin, WANG Cuixia, XUE Qunji, Structure development during mechanical slloying of Mo and Si powders, Rare Metal Materials and Engineering, 32(3), 170(2003)
(马勤, 王翠霞, 薛群基, 硅钼混合粉末在机械合金化过程中的结构演变, 稀有金属材料与工程,   32(3), 170(2003))
6 Lan Sun, Jinsheng Pan, TiC whisker–reinforced MoSi2 matrix composites, Materials Letters, 51(3), 270(2001)
7 Houan Zhang, Dezhi Wang, Chiping Chen, Toughing of MoSi2 doped by La2O3 particles, Materials Science and Engineering, A345(1–2), 118(2003)
8 H.Inui, K.Ito, T.Nakamoto, Stacking faults on (001) and their influence on the deformation and fracture behavior of single crystals of MoSi2–WSi2 solid–solutions with the C11b structure, Materials Science and Engineering, A314(1–2), 31(2001)
9 Qin Ma, Yanqing Yang, Mokuang Kang, Qunji Xue, Microstucture and mechanical properties of hot–pressed MoSi2–matrix composites reinforced with SiC and ZrO2 particles, Composites science and technology, 61(7), 963(2001)
10 Zhiquan Guo, Magdalena Parlinska–Wojtan, Gurdial Blugan, Thomas Graule, Mike J. Reece, Jakob Kuebler, The influence of the grain boundary phase on the mechanical properties of Si3N4–MoSi2 composites, Acta Materialia, 55(8), 2875(2007)
11 Zhiquan Guo, Gurdial Blugan, Thomas Graule, Mike Reece, Jakob Kuebler, The effect of different sintering additives on the electrical and oxidation properties of Si3N4-MoSi2 composites, Journal of the European Ceramic Society, 27(5), 2153(2007)
12 K.Yamada, N.Kamiya, High temperature mechanical properties of Si3N4-MoSi2 and Si3N4-SiC composites with network structures of second phases, Materials Science and Engineering, A261(3), 270(1999)
13 W.K.Robert, G.H.Mohan, Cyclic oxidation study of MoSi2-Si3N4 base composites, Materials Science and Engineering, A261(3), 300(1999)
14 ZHOU Hongming, YI Danqing, Toughening effect and mechanism within thermo compression composite Si3N4/MoSi2, Materials for Mechanical Engineering, 32(3), 23(2008)
(周宏明, 易丹青, 热压Si3N4/MoSi2复合材料的强韧化效果与机制, 机械工程材料, 32(3), 23(2008))
15 J.Wolfenstine, Y.L.Jeng, E.J.Lavernia, Elevated–temperature mechanical behavior of plasma–sprayed MoSi2–SiC, Materials Science and Engineering, A189(1–2), 257(1999)
16 WANG Xuecheng, CAI Huifen, WANG Xiaotian, Analysis of morphology and structure of MoSi2 synthesized by combustion method, The Chinese Journal of Nonferrous Metals, 5(2), 103(1995)
(王学成, 柴惠芬, 王笑天, 燃烧合成MoSi2的组织结构特征分析, 中国有色金属学报,  5(2), 103(1995))
17 Gang Wang, Wan Jiang, Guangzhao Bai, Si3N4 rod–like crystal–reinforced MoSi2 matrix composites, Materials Letters, 58(3–4), 308(2004)
18 XiAO Jimei, The Toughness and Toughening of Metal (Shanghai: Shanghai Science and Technology Press, 1983)p.156
(肖纪美,  金属的韧性与韧化  (上海, 上海科学技术出版社, 1983) p.156)
19 ZHANG Houan, XU Jianguang, YAN Jianhui, HU Xiaoping, Preparation and properties of MoSi2 and MoSi2– based composites (Beijing, National Defence Industry Press, 2007) p.45
(张厚安, 许剑光, 颜建辉, 胡小平, 二硅化钼及其复合材料的制备与性能 (北京, 国防工业出版社, 2007) p.45)
20 MA Qin, YANG Yanqing, KANG Mokuang, Study of K1c values of HP MoSi2 matrix composite estimated by indentation method, Rare Metal Materials and Engineering, 25(2), 30(1996)
(马勤, 杨延清, 康沫狂, 压痕法测定热压MoSi2基复合材料K1c值的研究, 稀有金属材料与工程, 25(2), 30(1996))

 

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.