Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (2): 113-117    
  研究论文 本期目录 | 过刊浏览 |
通电快速烧结制备超细晶粒纯钨的研究
周张健; 都娟; 马垚
北京科技大学材料科学与工程学院 北京100083
Fabrication and characterization of ultra-fine grained pure tungsten by two fast resistance sintering technologies
ZHOU Zhangjian;  DU Juan;  MA Yao
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
引用本文:

周张健 都娟 马垚. 通电快速烧结制备超细晶粒纯钨的研究[J]. 材料研究学报, 2009, 23(2): 113-117.
, , . Fabrication and characterization of ultra-fine grained pure tungsten by two fast resistance sintering technologies[J]. Chin J Mater Res, 2009, 23(2): 113-117.

全文: PDF(879 KB)  
摘要: 

采用在超高压力下通电快速烧结新方法在不添加任何烧结助剂的条件下制备出相对密度为97.9%、晶粒尺寸小于1 μm的超细晶粒纯钨块体材料, 研究了细钨粉块体的致密化行为. 在超高压力下通电烧结过程中, 超高压力使烧结样品具有高密度, 而样品的力学性能则主要得益于通电烧结. 与“放电等离子体烧结”方法相比, 超高压力下通电烧结不但能更好的保持材料的原始晶粒尺寸, 还能进一步细化晶粒.

关键词 金属材料 超细晶粒 通电烧结 超高压力    
Abstract

Pure tungsten with ultra-fine grain size has been fabricated by a novel sintering method combined resistance sintering with ultra high pressure in the absence of any additives. The relative density of the fabricated material is 97.9% and the average grain size is less than 1 μm. the density of the sintered sample is mainly contributed by the applied ultra high pressure, while the resistance sintering benefit for high mechanical properties of the sintered material. Compared to another fast resistance sintering technology spark plasma sintering, resistance sintering under ultra high pressure shows the advantage of not only retaining the fine grain size, but also further refining the grain size during consolidation.

Key wordsmetallic materials    tungsten    ultra fine grain    resistance sintering    ultra high pressure
收稿日期: 2008-10-22     
ZTFLH: 

TG146

 
基金资助:

国家自然科学基金50634060和国家重点基础研究发展计划(973)2007ID102资助项目.

1 R.M.German, J.Ma, X.Wang, E.Olevsky, Processing model for tungsten powders and extension to nanoscale
size range, Powder Metallurgy, 49(1), 19(2006)
2 ZOU Fangleng, Patent status of nano scale tungsten products of China, China Molybdenum Industry, 29(1), 11(2005)
(邹仿棱, 国内纳米钨系列产品的专利状况浅析, 中国钼业,  29(1), 11(2005))
3 YE Tuming, YI Jianhong, PENG Yundong, HU Lifu, LV Yuxiang, Progress in research on nano-crystalline high density tungsten-based alloys, Rare Metal, 28, 726 (2004)
(叶途明, 易健宏, 彭元东, 胡礼福, 吕豫湘, 纳米晶高密度钨合金的研究进展, 稀有金属, 28, 726(2004))
4 QU Xuanhui, FAN Jinglian, Powder injection molding and solid-state sintering of nano-crystalline tungsten heavy alloy, Chinese Journal of Materials Research, 15, 130(2001)
(曲选辉, 范景莲, 纳米晶钨基重合金粉末的注射成型与固相烧结, 材料研究学报,  15, 130(2001))
5 J.Mohit, S.Ganesh, M.Krista, K.Deepak, C.Kyu, K.Bradley, D.Robert, A.Dinesh, J.Cheng, Microwave sintering: A new approach to fine-grain tungsten-I, International Journal of Powder Metallurgy, 42(2), 45(2006)
6 Y.Kitsunai, H.Kurishita, H.Kayano, Y.Hiraoka, T.Igarashi, T.Takida, Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC, Journal of Nuclear Materials, 271-272, 423(1999)
7 J.Mohit, S.Ganesh, M.Krista, C.Kyu, K.Bradley, D.Robert, K.Deepak, A.Dinesh, J.Cheng, Microwave sintering: A new approach to fine-grain tungsten-II, International Journal of Powder Metallurgy, 42(2), 253(2006)
8 Z.A.Munir, U.Anselmi-tamburini, M.Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, 41, 763(2006)
9 K.Moon, H.Park, K.Lee, Consolidation of nanocrystalline Al-5at.% Ti alloy powders by ultra high-pressure hot pressing, Materials Science and Engineering A, 323, 293(2002)
10 WANG Zhifa, JIANG Guoshen, LIU Zhengchun, Ultrapressure Forming and Low-Temperature Sintering of Tungsten, Rare Metal Materials and Engineering, 27(5), 290(1998)
(王志法, 姜国圣, 刘正春, 钨的超高压成型与低温烧结, 稀有金属材料与工程,  27(5), 290(1998))
11 ZHOU Yusong, WU Xijun, LI Binghan, XU Guoliang, Synthesis of bulk samples of nanocrystalline tungsten, Chinese Journal of High Pressure Physics, 14(3), 291(2000)
(周宇松, 吴希俊, 李冰寒, 许国良, 采用真空热压技术制备纳米金属钨块体材料, 高压物理学报,  14(3), 291(2000))
12 Z.Zhou, J.Du, S.Song, C.Ge, Microstructural Characterization of W-Cu Functionally Graded Materials by one step resistance sintering method, Journal of Alloy and Compound, 428, 146(2007)

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.