Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (1): 77-82    
  研究论文 本期目录 | 过刊浏览 |
TC18钛合金的组织和性能与热处理制度的关系
官杰; 刘建荣; 雷家峰; 刘羽寅
中国科学院金属研究所钛合金研究部 沈阳 110016
The relationship of heat treatment--microstructures--mechanical properties of the TC18 titanium alloy
GUAN Jie;  LIU Jianrong; LEI Jiafeng;  LIU YuYin
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

官杰 刘建荣 雷家峰 刘羽寅. TC18钛合金的组织和性能与热处理制度的关系[J]. 材料研究学报, 2009, 23(1): 77-82.
, , , . The relationship of heat treatment--microstructures--mechanical properties of the TC18 titanium alloy[J]. Chin J Mater Res, 2009, 23(1): 77-82.

全文: PDF(875 KB)  
摘要: 

通过三因素三水平正交设计方法研究了两阶段退火热处理制度的三个温度阶段对TC18钛合金性能、组织的影响, 定量分析了合金热处理温度变化对总体性能的影响.结果表明, 在本文试验条件下可通过提高中温温度、降低低温温度来提高合金的强度,降低高温温度、提高低温温度可改善合金的塑性,通过降低高温温度或中温温度可提高合金的冲击韧性. 显微组织分析表明,TC18钛合金的强度主要受未转变β组织及在其上产生的次生αs相的总的含量、次生αs相的含量、形状的控制;合金的塑性受初生αp相形状及次生αs相的数量、形状控制;合金的冲击韧性受初生αp相的含量及形状控制.

关键词 金属材料正交设计TC18钛合金热处理组织性能    
Abstract

Through the 3×3 orthogonal experimental design methods, the influences of the different temperature stages of 2–step annealing heat treatment on the mechanical properties and the microstructures of the TC18 titanium alloy were investigated. The influence of the changes of temperature on the mechanical properties was quantitatively analyzed. The results show that the stress level can be increased by increasing the middle–stage of temperature and lowering the low–stage of temperature; the elongation level can be increased by lowering the high–stage temperature and increasing the low–stage temperature; and the impact toughness can be upgraded also by lowering the high–stage and the middle–stage temperature. The stress levels of TC18 titanium can be controlled by the amounts of the β phase and αs phase, the shape of αs phase; the elongation levels can be controlled by the shape of αp phase and the shape of the αs phase; and the impact toughness is controlled by the shape and the amounts of the αp phase.

Key wordsmetallic materials    orthogonal experimental design    TC18 titanium alloy    heat treatment    microstructure    mechanical property
收稿日期: 2008-02-28     
ZTFLH: 

TG113

 
1 S.L.Nyakana, J.C.Fanning, R.R.Boyer, Quick reference guide for β titanium alloys in the 00s, Journal of Materials Engineering and Performance, 14(6), 799(2005) 2 ZHU Feng, JI Bo, ZHU Yifan, Effect of heat treatment on the microstructure and properties of TC18 titanium alloys, Rare Metal Materials and Engineering, 34(Suppl.3), 314(2005) (朱 峰, 计波, 朱益藩, 热处理工艺对TC18钛合金组织及性能影响, 稀有金属材料科学与工程, 34(Suppl.3), 314(2005)) 3 CAO Chunxiao, Application of titanium alloy on large transporter, Rare Metals Letters, 25(1), 17(2006) (曹春晓, 钛合金在大型运输机上的应用, 稀有金属快报, {\bf 25}(1), 17(2006)) 4 SHENG Xianfeng, DING Zhiwen, ZHU Yifan, The effects of deformation and heat treatment on the microstructure and properties of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloys, Acta Metallurgica Sinica, 35(Suppl.1), 465(1999) (盛险峰, 丁志文, 朱益藩, 热变形量和热处理工艺对Ti--5Al--5Mo--5V--1Cr--1Fe钛合金组织和性能的影响, 金属学报,  35(Suppl.1), 465 (1999)) 5 I.S.Polkin, V.L.Rodionov, A.N.Stroshkov, T.V.Ishunkov, V.G.Kudryashov, O.S.Korobov, Structure and mechanical properties of VT22 (α+β) high strength titanium alloy semiproducts, in: Titanium92 Science and Technology, edited by F.H.Froes and I.Caplan (The Minerals, Metals & Materials Society, 1993) p.1569 6 N.V.Moiseev, E.I.Razuvaev, Formation of recrystallized structure in deformed semiproducts from titanium alloys of transition class obtained by isothermal die forming, Metal Science and Heat Treatment, 44(7–8), 309(2002) 7 A.A.Popov, A.G.Illarionov, A.V.Korelin, Formation of structure and properties in titanium alloys of a transition class after warm rolling, Metal Science and Heat Treatment, 42(9–10), 348(2000) 8 I.V.Levin, L.A.Smolyakova, G.A.Salishchev, Influence of hot deformation and heat treatment regimes on structure and mechanical properties of titanium alloy VT22, in: Titanium99 Science and Technology, edited by I.V.Gorynin, S.S.Ushkov (Saint–Petersburg, CRISM vPrometeyw, 2000) p.383 9 N.I.Moder, G.V.Savvatyeyeva, G.A.Bondaruk, Assessment of the influence of stresses on the course of the phase transformation process in VT22 alloy, in: Titanium99 Science and Technology, edited by I.V.Gorynin, S.S.Ushkov (Saint–Petersburg, CRISM vPrometeyw, 2000) p.753–759 10 MENG Xiaoying, PANG Kechang, YIN Junlin, Effect of heat treatment process on structure and property of TC18 titanium alloy, Heat Treatment, 21(1), 36 (2006) (孟笑影, 庞克昌, 殷俊林. 热处理工艺对TC18钛合金组织和性能的影响, 热处理,  21(1), 36(2006)) 11 MAO Xiaonan, ZHANG Pengsheng, YU Lanlan, ZHAO Yongqing, YUAN Shaochong, The microstructure sensitivity for BT22 titanium alloy, Rare Metal Materials and Engineering, 34(Suppl.3), 257(2005) (毛小南, 张鹏省, 于兰兰, 赵永庆, 袁少冲, BT22钛合金的组织敏感性, 稀有金属材料科学与工程,   34(Suppl.3), 257(2005)) 12 LI Xingwu, SHA Aixue, Sensitivity of microstructure and mechanical properties of TC18 titanium alloy at aging temperature, Rare Metal Materials and Engineering, 34(Suppl.3), 417(2005) (李兴无, 沙爱学, TC18钛合金显微组织和力学性能的时效温度敏感性研究, 稀有金属材料科学与工程,  34(Suppl.3), 417(2005)) 13 SHENG Zhou, XIE Shiqian, PAN Chengyi, Probability and Statistics, third edition, (Beijing, Higher Education Press, 2001) (盛骤, 谢式千, 潘承毅,  概率论与数理统计(第三版), (北京, 高等教育出版社, 2001))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.