Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (1): 17-21    
  研究论文 本期目录 | 过刊浏览 |
形状记忆纤维热粘弹性基体复合材料的力学行为
贺微波; 金明; 赵永利
北京交通大学土木建筑工程学院 北京 100044
Mechanic behaviors of the thermoviscoelastic matrix composites with shape memory fiber
HE Weibo; JIN Ming; ZHAO Yongli
School of Civil Engineering and Architecture; Beijing Jiaotong University; Beijing 100044
引用本文:

贺微波 金明 赵永利. 形状记忆纤维热粘弹性基体复合材料的力学行为[J]. 材料研究学报, 2009, 23(1): 17-21.
. Mechanic behaviors of the thermoviscoelastic matrix composites with shape memory fiber[J]. Chin J Mater Res, 2009, 23(1): 17-21.

全文: PDF(709 KB)  
摘要: 

应用热粘弹性理论和Voigt混合律, 在变温场中针对马氏体逆相变过程建立了 NiTi形状记忆纤维热粘弹性基体复合材料的应力--应变关系. 在逆相变过程和基体呈现热粘弹态阶段, 由于基体松弛其模量减小, 在跃阶拉应力的作用下, 复合材料的压缩应变迅速增大, 纤维回复应力先增大后减小; 在跃阶拉应变的作用下, 复合材料的应力增加先变缓然后加快直至稳定. 较高的温度和材料参数对NiTi纤维热粘弹性基体复合材料的力学行为和纤维的作动性能有明显的影响.

关键词 复合材料力学行为 热粘弹性 NiTi纤维 基体 松弛模量    
Abstract

A stress-strain relation of the thermoviscoelastic matrix composites with pre-strained NiTi fiber is proposed in the field of variable temperature based on the thermoviscoelasticity theory and the rule of mixtures, and in view of the process of martensite reverse transformation. During the reverse transformation and the thermoviscoelastic state of matrix, due to matrix relaxation modulus decreasing,the results show that upon the step constant stress, the compression strain of the composites increases rapidly, and the recovery stress of the NiTi fiber increases then decreases; Under the step constant strain, the increase of the composites stress become slow then fast, till steady. The behaviors of the composites, and the NiTi fiber actuation performance are influenced by higher temperature as well as the material parameters.

Key wordscomposites    mechanic behavior    thermoviscoelasticity    NiTi fiber    matrix    relaxation modulus
收稿日期: 2008-04-22     
ZTFLH: 

TB330

 
基金资助:

国家自然科学基金90205007资助项目.

1 J.G.Boyd, D.C.Lagoudas, Thermomechanical response of shape memory composites, Journal of Intelligent Material Systems and Structures, 5(3), 333(1994)
2 J.Wang, Y.P.Shen, Macromechanics of composites reinforced in the aligned SMA short fibers in uniform thermal fields, Smart Materials and Structures, 9, 69(2000)
3 S.Marfia, Micro-macro analysis of shape memory alloy composites, International Journal of Solids and Structures, 42, 3677(2005)
4 ZHU Yuping, DUI Guansuo, Three phase micromechanical modeling for a shape memory alloy reinforced composite, Key Engineering Materials, 324-325, 939(2006)
5 J.Aboudi, The response of shape memory alloy composites, Smart Materials and Structures, 6(1), 1(1997)
6 M.Cherkaoui, Q.P.Sun, G.Q.Song, Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement, International Journal of Solids and Structures, 37(11), 1577(2000)
7 ZHU Yiguo, Lu Hexiang, YANG Dazhi, Mechanical properties of elastoplastic matrix composite reinforced by long SMA fibers, Acta Materiae Compositae Sinica, 19(2),89(2002)
(朱Yi国, 吕和祥, 杨大智, SMA长纤维增强弹塑性基体复合材料的力学性能, 复合材料学报,  19(2),89(2002))
8 ZHANG Zhen, SHEN Yapeng, Mechanical properties of SMA composites embedded with aligned SMA short fiber in elastoplastic matrix, Acta Materiae Compositae Sinica, 21(6), 173(2002)
(张臻,  沈亚鹏,  形状记忆合金短纤维增强弹塑性基体复合材料的力学行为,  复合材料学报, 21(6), 173(2002))
9 X.W.Du, G.Sun, A study on the deflection of shape memory alloy reinforced thermo-viscoelastic beam, Composites Science and Technology, 64, 1375(2004) 10 SUN Shuangshuang, SUN Guojun, Influence of thermoviscoelastic behavior of polymer on actuation performance of shape memory alloy, Journal of Shanghai Jiaotong University, 35(4),485 (2001)
(孙双双,  孙国钧,  聚合物的热粘弹性对形状记忆合金作动性能的影响, 上海交通大学学报,  35(4), 485(2001))
11 HUANG Zhengming, An Introduction to Micromechanics of Composites (Beijing, The Press of Science, 2004) p.8
(黄争鸣,  复合材料细观力学引论  (北京, 科学出版社, 2004) p.8)
12 HU Zili, XIONG Ke, Study on interface failure of shape memory alloy(SMA) reinforced smart structure with damages, Acta Mech. Sinica, 21, 286(2005)
13 M.W.Lin, C.A.Rogers, Analysis of stress distribution in a shape memory alloy composite beam, AIAA-91-1164-CP, 169(1991)
14 ZHOU Guangquan, LIU Xiaomin, Theory of Viscoelasticity (Hefei, The Press of University of Science and Technology of China, 1996) p.233
(周光泉, 刘孝敏,  粘弹性理论  (合肥, 中国科学技术大学出版社, 1996) p.233)1996) p.233)

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.