Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 593-598    
  研究论文 本期目录 | 过刊浏览 |
含Mn中间层提高钛基SnO2电催化电极的稳定性
刘峻峰;冯玉杰;吕江维;丁海洋
哈尔滨工业大学市政环境工程学院 哈尔滨 150090
Enhancing service life of SnO2 electrode by introducing an interlayer containing Mn element
 LIU Junfeng; FENG Yujie; LV Jiangwei; DING Haiyang
School of Municipal and Environmental Engineering; Harbin Institute of Technology; Harbin 150090
引用本文:

刘峻峰 冯玉杰 吕江维 丁海洋. 含Mn中间层提高钛基SnO2电催化电极的稳定性[J]. 材料研究学报, 2008, 22(6): 593-598.
, , , . Enhancing service life of SnO2 electrode by introducing an interlayer containing Mn element[J]. Chin J Mater Res, 2008, 22(6): 593-598.

全文: PDF(955 KB)  
摘要: 

采用浸渍法和溶胶-凝胶法分别制备了含Mn中间层和SnO2表面催化层,并结合高温热氧化工艺制备了Ti/SnO2和Ti/MnOx/SnO2电催化电极.采用SEM、EDS和XPS等方法对两种电极进行了表征,使用大电流加速寿命实验详细研究了涂层的表面形貌、元素组成和化学态对两种电极稳定性的影响. 结果表明:Ti/MnOx/SnO2电极的稳定性是Ti/SnO2电极的4.8倍, 涂层使电极的稳定性显著提高. 致密的涂层和较多的晶格氧能有效减少或阻止阳极的腐蚀, 是电极稳定性提高的主要原因.

关键词 无机非金属材料 Ti/MnOX/SnO2电极 中间层 稳定性 电催化氧化    
Abstract

The interlayer containing Mn element and the SnO2 surface coating were prepared by dip coating and sol-gel method, respectively. The Ti/SnO2 and Ti/MnOx/SnO2 electrode were prepared by thermal oxidation technique. The service life of electrodes was evaluated by accelerated life experiment under big current density. The micrographs of electrode surface, the element composition of different layers and the chemical environment of elements in electrode surface were analyzed with the help of SEM, EDS and XPS. It was found that Ti/MnOx/SnO2 electrode processed longer service life than that of Ti/SnO2 electrode. The main reasons of long service life were compacted coating and much crystal oxygen in electrode surface which could reduce or resist the corrosion of electrode.

Key wordsinorganic nonmetallic material    Ti/MnOx/SnO2 electrode    interlayer    service life    electrocatalytic oxidation
收稿日期: 2008-03-20     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金(50278022); 黑龙江省杰出青年科学基金(JC-02-04)

1 L.L.Houk, S.K.Johnson, J.Feng, R.S.Houk, D.C.Johnson, Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte, Journal of Applied Electrochemistry, 28(11), 1167(1998)
2 E.Brillas, J.C.Calpe, J.Casado, Mineralization of 2,4-D by advanced electrochemical oxidation processes, Water Research, 34, 2253(2000)
3 E.Santiago, G.Jaime, C.Sandra, Comparison of different advanced oxidation processes for phenol degradation, Water Research, 36, 1034(2002)
4 H.Habazaki, Y.Hayashi, H.Konno, Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment, Electrochimica Acta, 47, 4181(2002)
5 A.Fernandes, A.Mor?ao, M.Magrinho, A.Lopes, I.Goncalves, Electrochemical degradation of C.I.acid orange 7, Dyes and Pigments, 61, 287(2004)
6 FENG Yujie, LI Xiaoyan, YOU Hong, DING Fan, Application of electrochemical technology in environmental engineering (Beijing, Chemical Industry Press, 2002)p.94 
(冯玉杰, 李晓岩, 尤宏, 丁凡, 电化学技术在环境工程中的应用 (北京, 化学工业出版社, 2002)p.94)
7 A.M.Polcaro, S.Palmas, F.Renoldi, On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment, Journal of Applied Electrochemistry, 29(2), 147(1999)
8 C.P.De Pauli, S.Trasatti, Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solution, Journal of Electroanalytical Chemistry, 538-539, 145(2002)
9 Y.J.Feng, X.Y.Li, Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Water Research, 37(10), 2399(2003)
10 R.K¨otz, S.Stucki, B.Carcer, Electrochemical waste water treatment using high overvoltage anodes, Part I, Physical and electrochemical properties of SnO2 anodes, Journal of Applied Electrochemistry, 21(1), 14(1991)
11 C.Comninellis, A.D.Battisti, Service life of Ti/SnO2- Sb2O5 anodes, Journal of Applied Electrochemistry, 27(8), 970(1997)
12 P.A.Michaud, C.Comninellis, Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment, Journal of Applied Electrochemistry, 33(12), 1211(2003)
13 CUI Yuhong, FENG Yujie, SUN Lixin, LIU Junfeng, CAI Weimin, Development of electro-chemical technology and high efficiency catalytic electrode for wastewater treatment, Journal of Harbin Institute of Technology, 36(4), 450(2004)
(冯玉杰, 崔玉虹, 孙丽欣, 刘峻峰, 蔡伟民,电化学废水处理技术及高效电催化电极的研究与进展, 哈尔滨工业大学学报,36(4), 450(2004))
14 CUI Yuhong, FENG Yujie, LIU Junfeng, Preparation and characterization on Sb doped Ti-base SnO2 electrocatalytic electrodes, Journal of Functional Materials, 36(2), 234(2005)
(崔玉虹, 冯玉杰, 刘峻峰, Sb掺杂钛基SnO2电极的制备、表征及其电催化性能研究, 功能材料, 36(2), 234(2005))
15 CUI Yuhong, FENG Yujie, LIU Junfeng, Performance of Ti-base SnO2 electrode with an interlayer containing Mn element, Chinese Journal of Materials Research, 19(1), 47-53(2005)
(崔玉虹, 冯玉杰, 刘峻峰, 含Mn中间层钛基二氧化锡电催化电极的性能, 材料研究学报, 19(1), 47-53(2005))
16 Y.J.Feng, J.F.Liu, Preparation and characterization of Ti/SnO2 electrocatalytic electrode with nano-caoting, American Chemical Society Symposium series of 229th National Meeting, edited by Ruth Hathaway (San Diego, 2005)
P.U826 17 LIU Junfeng, FENG Yujie, SUN Lixin, QIAN Zhenggang, Investigation on preparation and electrocatalytic characteristics of Ti-base SnO2 electrode with nano-coating, Materials Science and Technology, 14(2), 200(2006)
(刘峻峰, 冯玉杰, 孙丽欣, 钱正刚, 钛基SnO2纳米涂层电催化电极的制备及性能研究, 材料科学与工艺, 14(2), 200(2006))
18 China Environmental Protection Bureau, Water and wastewater analytic methods, fourth edition (Beijing, China Environmental Science Press, 1998)p.408 
(国家环保总局编, 水和废水监测分析方法, 第四版 (北京, 中国环境科学出版社, 1998)p.408)
19 C.Comninellis, C.Pulgarin, Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes, Journal of Applied Electrochemistry, 23, 108(1993)
20 P.Dabo, A.Cvr, F.Laplante, Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol, Environmental Science & Technology, 34(7), 1265(2000)
21 ZHANG Zhaoxian, Technology for Ti-based electrodes, second edition (Beijing, China Metallurgical Industry Press, 2003)p.371 
(张招贤, 钛电极工学, 第二版 (北京, 冶金工业出版社, 2003)p.371)
22 B.Safonova, M.N.Rumyantseva, R.I.Kozlov, Two successive effects in the interaction of nanocrystalline SnO2 thin films with reducing gases, Materials Science and Engineering B, 77, 159(2000)
23 C.Comninellis, Electrocatalysis in the electrochemical conversion/combussion of organic pollutants for waste water treatment, Electrochemica Acta, 39(11/12), 1857(1994)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 李桥, 牛犇, 张瑞谦, 刘会群, 林国强, 王清. Ta/ZrFe-Cr-Al-Mo-Nb合金温轧板材高温组织稳定性的影响[J]. 材料研究学报, 2023, 37(6): 423-431.
[7] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.