Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 580-584    
  研究论文 本期目录 | 过刊浏览 |
离心铸造液态金属充型流动过程中气泡的形核规律
隋艳伟1;  李邦盛1†; 刘爱辉2; 熊艳才3; 郭景杰1; 傅恒志1
1.哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
2.淮阴工学院机械工程系 淮安 223003
3.北京航空材料研究院 北京 100095
Gas bubble nucleation in centrifugal casting liquid metal filling and flow process
 SUI Yanwei1; Li Bangsheng1†; Liu Aihui2; Xiong Yancai3; Guo Jingjie1; FU Hengzhi1
1.School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
2.Department of Mechanical Engineering; Huaiyin Institute of Technology; Huaian 223003
3.Beijing Institute of Aeronautical; Beijing 100095
引用本文:

隋艳伟; 李邦盛; 刘爱辉; 熊艳才; 郭景杰; 傅恒志. 离心铸造液态金属充型流动过程中气泡的形核规律[J]. 材料研究学报, 2008, 22(6): 580-584.
, , , , , . Gas bubble nucleation in centrifugal casting liquid metal filling and flow process[J]. Chin J Mater Res, 2008, 22(6): 580-584.

全文: PDF(652 KB)  
摘要: 

对离心力场作用下液态金属充型流动过程中气体的溶解度、气泡的形核条件、形核功、临界形核半径以及形核率进行了定量研究. 结果表明,在离心力场作用下气体的溶解度是一个梯度量, 随着离心半径和离心角速度的增大而增大;气泡的形核功和临界形核半径也随着离心半径和离心角速度的增大而增大,而气泡的形核率相应地减小; 离心半径和离心角速度越大,对气体溶解度和气泡形核的影响越明显;因此, 在离心力场作用下可通过提高离心旋转角速度和离心半径减少气孔缺陷.

关键词 金属材料 离心铸造 理论分析 气泡 形核    
Abstract

By means of quantitative analysis method, gas solubility, gas bubble nucleation condition, nucleation work, critical nucleation radius, and nucleation rate in centrifugal casting liquid metal filling and flow process are studied. The results show that with increasing the centrifugal radius and angular velocity, gas solubility as a gradient vector in centrifugal field, gas bubble nucleation work, and critical nucleation radius increase, but gas bubble nucleation rate decreases. Meanwhile, the effect of the centrifugal radius and angular velocity on gas solubility and gas bubble nucleation is more significant with their increasing. Therefore, porosity can be reduced through increasing the centrifugal radius and angular velocity in centrifugal field.

Key wordsmetallic materials    centrifugal casting    theoretical analysis    gas bubble    nucleation
收稿日期: 2008-01-28     
ZTFLH: 

TG249

 
基金资助:

国家自然科学基金(50434030)

1 Wu Shiping, Liu Dongrong, Guo Jingjie, Li Changyun, Su Yanqing, Fu Hengzhi, Numerical simulation of microstructure evolution of Ti-6Al-4V alloy in vertical centrifugal casting, Materials Science and Engineering A, 426, 240- 249(2006)
2 Halvaee A, Talebi A, Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy, Journal of Materials Processing Technology, 118(1-3), 123-127(2001)
3 G Chirita, D Soares, F S Silva, Advantages of the centrifugal casting technique for the production of structural components with Al–Si alloys, Materials and Design, 29, 20-27(2008)
4 R.A.Mesquita, D.R.Leiva, A.R.Yavari, W.J.Botta Filho, Microstructures and mechanical properties of bulk AlFeNd(Cu, Si) alloys obtained through centrifugal force casting, Materials Science and Engineering A, 452-453, 161-169(2007)
5 LI Qingchun, Basis of Cast Forming Theory (Beijing, China Machine Press, 1982) p.187-199 
(李庆春, 铸件形成理论基础 (北京, 机械工业出版社, 1982) p.187-199)
6 Kun-Dar Li, Edward Chang, Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution, Acta Materialia, 52, 219- 231(2003)
7 ZHANG Boning, Centrifugal Casing (Beijing, China Machine Press, 2004) p.50-65 
(张伯明, 离心铸造 (北京, 机械工业出版社, 2004) p.50-65)
8 TAN Yingyuan, Reasons for Producing Gas Hole and Prevention Measurement under Centrifugal Casting for Al-Si Alloy, Journal of Wuhan Institute of Shipbuilding Technology, 1, 28-29(2003)
(谭银元, Al-Si合金离心铸造产生气孔的原因及防止措施, 武汉船舶职业技术学院学报, 1, 28-29(2003))
9 Wu. M, Auqthun. M, Wagner. I, Sahm. P. R, Spiekermann. H, Numerical simulation of the casting process of titanium tooth crowns and bridges, Journal of Materials Science: Materials in Medicine, 12(6), 485-490(2001)
10 SHENG Wenbin, GUO Jingjie, SU Yanqing, DING Hongsheng, JIA Jun, Analysis on inner defects in TiAl based alloy exhaust valve during the centrifugal foundry process in permanent mold, Journal of Aeronautical Materials, 20(2), 40-45(2000)
(盛文斌, 郭景杰, 苏彦庆, 丁宏升, 贾均, TiAl基合金排气阀金属型离心铸造过程内部缺陷分析, 航空材料学报, 20(2), 40-45(2000))
11 Suzuki Ken-ichiro, Nishikawa Koji, Watakabe Sirou, Mold filling and solidification during centrifugal precision casting of Ti-6Al-4V alloy, Materials Transactions, JIM, 37(12), 1793-1801(1996)
12 J Wannasin, M C Flemings, Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process, Journal of Materials Processing Technology, 169, 143-149(2005)
13 GUO Jingjie, FU Hengzhi, Alloy Melts and Its Treatment (Beijing, China Machine Press, 2004) p.187-207 
(郭景杰, 傅恒志, 合金熔体及其处理 (北京, 机械工业出版社, 2004) p.187-207)
14 ZHAI Qijie, GUAN Shaokang, SHANG Quanyi, thermodynamics of alloys Theory and application (Beijing, Metallurgical Industry Press, 1999) p.121-138 
(翟启杰, 关绍康, 商全义, 合金热力学理论及其应用 (北京, 冶金工业出版社, 1999) p.121-138)
15 Institute of Metallurgy Chinese academy of sciences translate, Casting properties for Titanium alloys in Foreign Countries (Shanghai, Shanghai science and Technology information research institute press, 1974) p.34-36 
(中国科学院冶金研究所译, 国外钛合金的铸造性能 (上海, 上海科学技术情报研究所出版, 1974) p.34-36)
16 XU Zuyao, Phase Transformations Under Stress, Heat Treatment, 19(2), 1-17(2004)
(徐祖耀, 应力作用下的相变, 热处理, 19(2), 1-17(2004))
17 Kim S W, Lee U J, Woo K D, Kim D K, Solidification microstructures and mechanical properties of vertical centrifugal cast high speed steel, Materials Science and Technology, 19(22), 1727-1732(2003)
18 CUI Zhongqi, LIU Beixing, Metallurgy and Heat Treatment Principles (Harbin, Harbin Institute of Technology Press, 1998) p.40-52 
(崔忠圻, 刘北兴, 金属学与热处理原理 (哈尔滨, 哈尔滨工业大学出版社, 1998) p.40-52)
19 Tumbull D, Formation of crystal nuclei in liquid metals, Journal of Applied Physics, 21(10), 1022-1028(1950)
20 Tiller W A, Jackson K A, Rutter J W, The redistribution of solute atoms during the solidification of metals, Acta Materialia, 1, 428-437(1951)

[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.