Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (3): 241-245    
  论文 本期目录 | 过刊浏览 |
Ni/MnO纳米复合粒子的生长机制
孙舰鹏;董星龙;张雪峰;吕波
大连理工大学三束材料改性国家重点实验室
The Analysis and Growth Mechanism of Core/Shell-type Ni/MnO Nanoparticls
;;;;;
大连理工大学
引用本文:

孙舰鹏; 董星龙; 张雪峰; 吕波 . Ni/MnO纳米复合粒子的生长机制[J]. 材料研究学报, 2008, 22(3): 241-245.
, , , . The Analysis and Growth Mechanism of Core/Shell-type Ni/MnO Nanoparticls[J]. Chin J Mater Res, 2008, 22(3): 241-245.

全文: PDF(1030 KB)  
摘要: 以Ni和MnO2微米粉为原料,采用直流电弧等离子法在氢--氩混合气氛中合成了MnO包覆Ni纳米复合粒子.用XRD、TEM、TG--SDTA等方法分析了纳米粒子的相组成、形貌和热稳定性.结果表明: Ni/MnO 复合纳米粒子具有一致的“核/壳”微结构,尺寸分布在100--120 nm范围. 核和壳分别为Ni和MnO相.根据定量氧辅助V--L--S机制, Ni纳米核在复合粒子生长过程中的催化作用,是“核/壳”结构形成的重要因素.
关键词 复合材料核/壳结构Ni/MnO    
Abstract:Shell/core-type MnO-coated Ni nanoparticles was prepared by arc discharge method using micron-sized Ni and MnO2 powders as the raw materials, and the evaporating atmosphere was a mixture of hydrogen and argon. The morphology, structure and chemical composition of the as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermal gravity analysis (TGA), respectively. It was showed that most of nanoparticles were in spherical shape in the range of 30-60 nm, with a shell of MnO phase and a core of Ni. The formation of nanoparticals was effectively explained by an extended mechanism of the Vapor-Liquid-Solid (VLS) with the existence of stoichiometric oxygen. The Ni core plays an essential catalyst in the formation of the core/shell structure.
Key wordscore/shell structure    DC arc plasma method    Ni/MnO    growth mechanism
收稿日期: 2007-06-12     
1 J.J.Blackwell,M.P.Morales,K.O' Grady,J.M.Gonzalez, F.Cebollada,M.Alonso-Sanudo,Interactions and hystere- sis behaviour of Fe/SiO_2 nanocomposites,J.Magn.Magn. Mater.,242-245,1103(2002)
2 V.G.Pol,M.Motiei,A.Gedanken,J.Calderon-Moreno, Y.Mastai,Sonochemical deposition of air-stable iron nanoparticles on monodispersed carbon spherules,Chem. Mater.,15,1378(2003)
3 Z.Y.Zhong,Y.Mastai,Y.Koltypin,Y.M.Zhao, A.Gedanken,Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate,Chem.Mater., 11,2350(1999)
4 V.G.Pol,R.Reisfeld,A.Gedanken,Sonochemical synthesis and optical properties ofeuropium oxide nanolayer coated on titania,Chem.Mater.,14,3920(2002)
5 M.Z.Wu,Y.D.Zhang,S.Hui,T.D.Xiao,S.h.Ge, W.A.Hines,J.I.Budnick,G.W.Taylor,Microwave mag- netic properties of Co_(50)/(SiO_2)_(50)nanoparticles,Appl. Phys.Lett.,80,4404(2002)
6 M.Z.Wu,Y.D.Zhang,S.Hui,T.D.Xiao,S.h.Ge, W.A.Hines,J.I.Budnick,M.J.Yacaman,Magnetic properties of SiO_2-coated Fe nanoparticles,J.Appl. Phys.92,6809(2002)
7 M.Z.Wu,Y.D.Zhang,S.Hui,T.D.Xiao,S.h.Ge, W.A.Hines,J.I.Budnick,Structure and magnetic proper- ties of SiO_2-coated Co nanoparticles,J.Appl.Phys.,92, 491(2002)
8 SHI Guimei,ZHANG Zhidong,LI Zhijie,YANG Hongcai, Structure and magnetic properties of Al_2O_3/NiO coated Ni nanoparticles,Chinese J.Mater.Res.,19,299(2005) (史桂梅,张志东,李志杰,杨洪才,Al_2O_3/NiO包裹Ni纳米颗粒的结构和磁性,材料研究学报,19,299(2005))
9 X.L.Dong,Z.D.Zhang,S.R.Jin,B.K.Kim,Carbon-coated Fe-Co(C)nanocapsules prepared by arc discharge in methane,J.Appl.Phys.,86,6701(1999)
10 X.L.Dong,Z.D.Zhang,Q.F.Xiao,X.G.Zhao,Y.C.Chuang, S.R.Jin,W.M.Sun,Z.J.Li,Z.X.Zheng,H.J.Yang,Charac- terization of ultrafineγ-Fe(C),α-Fe(C)and Fe_3C parti- cles synthesized by arc-discharge in methane,Mater.Sci., 33,1915(1998)
11 X.L.Dong,Z.D.Zhang,Y.C.Chuang,S.R.Jin,Characteri- zation of ultrafine Fe-Co particles and Fe-Co(C)nanocap- sules,Phys.Rev.B,60,3017(1999)
12 X.F.Zhang,X.L.Dong,H.Huang,B.Lv,X.G.Zhu,J.P.Lei, S.Ma,W.Liu,Z.D.Zhang,Synthesis,growth mechanism and magnetic properties of SiO_2-coated Co nanocapsules, Acta Mater.,55,3727(2007)
13 X.F.Zhang,X.L.Dong,H.Huang,B.Lv,X.G.Zhu,J.P.Lei, S.Ma,W.Liu,Z.D.Zhang,Synthesis,structure and mag- netic properties of SiO_2-coated Fe nanocapsules,Mat. Sci.Eng.A,454-455,211(2007)
14 X.L.Dong,Z.D.Zhang,S.R.Jin,W.M.Sun,Y.C.Chuang, Surface characterizations of ultrafine Ni particles,Nanos- truct.Mater.,10,585(1998)
15 L.Dimesso,L.Heider,H.Hahn,Synthesis of nanocrys- talline Mn-oxides by gas condensation,Solid State Ionics, 123,39(1999)
16 I.A.Dean,Lange's Handbook of Chemistry,14th ed.(Mc Graw-Hill,New York,1992,Sec.6)p.101
17 M.Kuno,T.Oku,K.Suganuma,Encapsulation of cobalt oxide nanoparticles and Ar in boron nitride nanocapsules, Scripta Mater.,44,1583(2001)
18 J.Jiao,S.Seraphin,Carbon encapsulated nanoparticles of Ni,Co,Cu,and Ti,J.Appl.Phy.,83,2442(1998)i
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.