Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 701-711    DOI: 10.11901/1005.3093.2025.166
  研究论文 本期目录 | 过刊浏览 |
β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析
施渊吉1(), 程诚2, 张海涛1, 胡道春1, 陈晶晶3(), 黎军顽4
1.南京工业职业技术大学 江苏省工业感知及智能制造装备工程研究中心 南京 210023
2.南京航空航天大学材料科学与技术学院 南京 210016
3.南昌理工学院 机械表/界面摩擦磨损与防护润滑研究中心 南昌 330044
4.上海大学材料科学与工程学院 上海 200444
Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear
SHI Yuanji1(), CHENG Cheng2, ZHANG Haitao1, HU Daochun1, CHEN Jingjing3(), LI Junwan4
1.Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing University of Industry Technology, Nanjing 210023, China
2.College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3.Mechanical Friction Wear and Protective Lubrication Research Center on Surface/Interface, Nanchang Institute of Technology, Nanchang 330044, China
4.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
Yuanji SHI, Cheng CHENG, Haitao ZHANG, Daochun HU, Jingjing CHEN, Junwan LI. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. Chinese Journal of Materials Research, 2025, 39(9): 701-711.

全文: PDF(22856 KB)   HTML
摘要: 

为了减少微机电系统的黏着接触失效和磨损,从原子尺度研究了β-SiC半导体器件在滑动摩擦中材料去除行为的机制。用分子动力学法研究了磨粒半径、压深、滑动速度、服役温度以及基底晶面对β-SiC在滑动磨损中微结构的演化和材料去除行为的影响。结果表明:β-SiC材料在滑动磨损中去除的原子尺度机制是,受高应力和高温影响的磨粒和β-SiC挤压区极易在水平摩擦力的作用下不断从材料表面去除而成为磨屑堆积在磨粒的正前方和紧密接触区的边缘。随着服役温度的提高和压深的增加,磨损产生的磨屑原子随之增多。但是,滑动速度的提高使磨粒正前方和接触边缘的磨损堆积减少。同时,β-SiC在滑动磨损中的塑性变形,以立方晶体结构向闪锌矿晶体结构转变和基底内位错形核、生长、增殖和滑移为主,β-SiC基底的Von Mises应力集中度与基底内位错区域的位置呈正相关。在滑动磨损中,随着磨粒半径、压深的增加和滑动速度的提高,径向分布函数的峰值增大,产生的β-SiC非晶原子数增多,而服役温度的提高使β-SiC的非晶原子减少。同时,β-SiC的晶面选择性对滑动磨损中的水平摩擦力、微结构演化、磨屑数、原子矢量位移、温度场和应力场分布有显著的各向异性特征。

关键词 无机非金属材料塑性去除纳米摩擦β-SiC原子尺度    
Abstract

Understanding the material removal mechanism during the sliding wear process of β-SiC materials from an atomic scale perspective will helpful reduce the occurrence of adhesive contact failure and wear in micro-electromechanical system devices. Therefore, the influence of abrasive radius, depth of pressing, sliding speed, service temperature and substrate crystal plane etc. on the SiC microstructure evolution and material removal behavior during the sliding wear of β-SiC materials was studied by means of molecular dynamics method. Results show that the atomic-scale removal mechanism of β-SiC materials in sliding wear lies in the fact that the abrasive grains and the extrusion zone are affected by the dual coupling of high stress and high temperature. It is very easy for the material to be continuously removed from the surface under the induction of horizontal friction force, resulting in the accumulation of grinding debris in front of the abrasive grains and on both sides of the edge of the close contact zone. As the service temperature and pressure depth increase, the number of wear chip atoms produced by wear also increases. However, as the sliding speed increases, the accumulation of wear atoms in front of the abrasive grains and on both sides of the contact edge indeed decreases. Furthermore, the plastic deformation in sliding wear of β-SiC is mainly dominated by the nucleation, growth, proliferation and sliding of dislocations from the cubic crystal structure to the sphalerite crystal structure and within the substrate. Moreover, the concentration degree of Von Mises stress distribution in the β-SiC substrate is positively correlated with the regions where dislocation defects occur within the substrate. The results show that in sliding wear, with the increase of abrasive radius, depth of pressing and sliding speed, the larger the peak value of the radial distribution function, the more amorphous atoms will be produced by β-SiC. However, as the service temperature rises, the number of amorphous atoms produced by β-SiC indeed decreases. In addition, the crystal plane selectivity of the β-SiC substrate has significant anisotropic characteristics for the horizontal friction force, microstructure evolution, wear chip number, atomic vector displacement, temperature field and stress field distribution in sliding wear.

Key wordsinorganic non-metallic materials    plastic remove    nanofriction    β-SiC    atomic scale
收稿日期: 2025-05-09     
ZTFLH:  TH114.1  
基金资助:江苏省工业感知及智能制造装备工程研究中心开放基金(ZK220504);江西省教育厅科学技术研究项目(GJJ2402622)
通讯作者: 施渊吉,副教授,2018100937@niit.edu.cn,研究方向为材料加工与表面技术
陈晶晶,副教授,chenjingjingfzu@126.com,研究方向为机械表/界面摩擦磨损与防护润滑
Corresponding author: SHI Yuanji, Tel: (025)85864039, E-mail: 2018100937@niit.edu.cn;
CHEN Jingjing, Tel: (0794)8242215, E-mail: chenjingjingfzu@126.com
作者简介: 施渊吉,男,1989年生,博士
图1  β-SiC纳米滑动摩擦三维分子动力学模型
Simulation conditionParameters setting
Model dimension (L)Lx (28.3 nm) × Ly (46.8 nm) ×Lz (26.3 nm)
Cutting speed (V)100 m/s, 200 m/s, 300 m/s
Cutting depth (d)3 nm, 5 nm, 7 nm
Abrasive particle radius (R)5 nm, 7 nm, 9 nm
Newton layer (T)1 K, 300 K, 800 K
Crystal plane(001), (110), (111)
Time step1 fs
表1  β-SiC纳米滑动摩擦参数设置
图2  滑动摩擦参数对β-SiC平均摩擦力影响
图3  温度对β-SiC纳米滑动磨损的原子位移幅度和剪切变形影响
图4  滑动速度对β-SiC纳米磨损阶段的原子位移幅度和剪切变形的影响
图5  晶面选择性和压深对β-SiC纳米滑动磨损的原子位移幅度影响
图6  滑动摩擦参数对β-SiC微结构演化影响
图7  滑动摩擦参数对β-SiC原子矢量位移的影响
图8  滑动摩擦参数对β-SiC磨屑原子数的影响
图9  滑动摩擦参数对β-SiC径向分布函数影响
图10  滑动摩擦参数(温度、速度、压深、晶面)对β-SiC应力场分布的影响
图11  滑动摩擦参数(温度、速度、压深、晶面)对β-SiC温度场分布的影响
[1] Giorgis F, Giuliani F, Pirri C F, et al. Wide band gap a-SiC:H films for optoelectronic applications [J]. J. Non-Cryst. Solids, 1998, 227-230: 465
[2] Zhang Z Y, Guo B, Wang F. Evaluation of switching loss contributed by parasitic ringing for fast switching wide band-gap devices [J]. IEEE Trans. Power Electron., 2019, 34(9): 9082
[3] Yun N, Lynch J, Sung W. Demonstration and analysis of a 600 V, 10 A, 4H-SiC lateral single RESURF MOSFET for power ICs applications [J]. Appl. Phys. Lett., 2019, 114(19): 192104
[4] Demenet J L, Amer M, Tromas C, et al. Dislocations in 4H-and 3C-SiC single crystals in the brittle regime [J]. Phys. Status Solidi c, 2013, 10(1): 64
[5] Bai S, Devaty R P, Choyke W J, et al. Determination of the electric field in 4H/3C/4H-SiC quantum wells due to spontaneous polarization in the 4H SiC matrix [J]. Appl. Phys. Lett., 2003, 83(15): 3171
[6] Neudeck P G. Electrical impact of SiC structural crystal defects on high electric field devices [J]. Mater. Sci. Forum, 2000, 338-342: 1161
[7] Feng A, Munir Z A. The effect of an electric field on self-sustaining combustion synthesis: Part II. field-assisted synthesis of μ-SiC [J]. Metall. Mater. Trans., 1995, 26B(3) : 587
[8] Patrick L, Choyke W J. Static dielectric constant of SiC [J]. Phys. Rev., 1970, 2B(6) : 2255
[9] Tsui B Y, Fang K L, Lee S D. Electrical instability of low-dielectric constant diffusion barrier film (a-SiC:H) for copper interconnect [J]. IEEE Trans. Electron Devices, 2001, 48(10): 2375
[10] Prakash S. Heirarchical method for approximating MEMS analysis. Pro. of Beenett Conf. 1999
[11] Vakis A I, Yastrebov V A, Scheibert J, et al. Modeling and simulation in tribology across scales: an overview [J]. Tribol. Int., 2018, 125: 169
[12] Deng W L, Kesari H. Depth-dependent hysteresis in adhesive elastic contacts at large surface roughness [J]. Sci. Rep., 2019, 9(1): 1639
doi: 10.1038/s41598-018-38212-z pmid: 30733488
[13] Xu H, Komvopoulos K. Fracture mechanics analysis of asperity cracking due to adhesive normal contact [J]. Int. J. Fract., 2013, 181(2): 273
[14] Gao C H, Liu M. Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter [J]. Tribol. Lett., 2019, 67(1): 8
[15] Liu M, Xie P. Rate and load effects on scratch behavior of thermoplastics by berkovich indenter [J]. J. Mater. Eng. Perform., 2023, 32(20): 9323
[16] Buijnsters J G, Shankar P, Van Enckevort W J P, et al. Adhesion analysis of polycrystalline diamond films on molybdenum by means of scratch, indentation and sand abrasion testing [J]. Thin Solid Films, 2005, 474(1-2): 186
[17] Liu M, Hou D Y, Wu L X. Influence of poly(ethyleneimine) functionalized multi-walled carbon nanotubes on mechanical and tribological behavior of epoxy resins [J]. Mater. Today Commun., 2022, 33: 104480
[18] Mendas M, Benayoun S. Investigating the effects of microstructure on the wear mechanisms in lamellar cast irons via microscratch tests [J]. Tribol. Int., 2013, 67: 124
[19] Liu M, Zheng Q, Gao C H. Sliding of a diamond sphere on fused silica under ramping load [J]. Mater. Today Commun., 2020, 25: 101684
[20] Meng B B, Zhang Y, Zhang F H. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter [J]. Appl. Phys., 2016, 122A(3) : 247
[21] Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials [J]. J. Eng. Ind., 1991, 113(2): 184
[22] Shi S H, Yu Y Q, Wang N C, et al. Investigation of the anisotropy of 4H-SiC materials in nanoindentation and scratch experiments [J]. Materials, 2022, 15(7): 2496
[23] Tian Z G, Xu X P, Jiang F, et al. Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations [J]. Ceram. Int., 2019, 45(17): 21998
[24] Sun S, Peng X H, Xiang H G, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: formation of prismatic loops [J]. Ceram. Int., 2017, 43(18): 16313
[25] Tian Z G, Chen X, Xu X P. Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates [J]. Int. J. Extrem. Manuf., 2020, 2(4): 045104
[26] Wang J S, Fang F Z. Nanometric cutting mechanism of silicon carbide [J]. CIRP Ann., 2021, 70(1): 29
[27] Tian D Y. Research on 3C-SiC nanometric cutting mechanism under SEM online observation [D]. Tianjin: Tianjin University, 2020
[27] 田东禹. 3C-SiC的SEM在线纳米切削机理研究 [D]. 天津: 天津大学, 2020
[28] Zhou P, Sun T, Shi X D, et al. Atomic-scale study of vacancy defects in SiC affecting on removal mechanisms during nano-abrasion process [J]. Tribol. Int., 2020, 145: 106136
[29] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117(1): 1
[30] Wang S, Zhou Q T, Zhan H M, et al. Atomic analysis of contact-induced subsurface damage behavior of single crystal SiC based on molecular simulation [J]. Chin. J. Mater. Res., 2023, 37(12): 943
doi: 10.11901/1005.3093.2023.126
[30] 王 胜, 周俏亭, 占慧敏 等. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析 [J]. 材料研究学报, 2023, 37(12): 943
[31] Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study [J]. Ceram. Int., 2020, 46(8): 12686
[32] Zhao T. Study on the instrinsic relationship between nanometric cutting mechanism and microstructure evolution of single crystal silicon [D]. Qinhuangdao: Yanshan University, 2015
[32] 赵 腾. 单晶硅纳米切削机理与微结构演化的内在关联性研究 [D]. 秦皇岛: 燕山大学, 2015
[1] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[2] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[3] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[4] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[5] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[6] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[7] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[8] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[9] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[10] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[11] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[12] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[13] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[14] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[15] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.