Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (4): 279-287    DOI: 10.11901/1005.3093.2023.370
  研究论文 本期目录 | 过刊浏览 |
等温淬火对纳米贝氏体钢的组织和力学性能的影响
王玉钊1, 蒋中华2(), 贾春妮2, 张玉妥1,2(), 王培2
1.沈阳理工大学材料科学与工程学院 沈阳 110159
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel
WANG Yuzhao1, JIANG Zhonghua2(), JIA Chunni2, ZHANG Yutuo1,2(), WANG Pei2
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王玉钊, 蒋中华, 贾春妮, 张玉妥, 王培. 等温淬火对纳米贝氏体钢的组织和力学性能的影响[J]. 材料研究学报, 2024, 38(4): 279-287.
Yuzhao WANG, Zhonghua JIANG, Chunni JIA, Yutuo ZHANG, Pei WANG. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. Chinese Journal of Materials Research, 2024, 38(4): 279-287.

全文: PDF(17674 KB)   HTML
摘要: 

依据Thermo-Calc计算设计了一种成分为Fe-0.8C-2Mn-1.5Si-1.5Cr-0.25Mo-0.25Ni-1Al-0.25Co-0.1V可用于制造钢丝的纳米贝氏体钢,使用热膨胀相变仪、扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)和拉伸实验等手段研究了等温淬火温度和时间对其组织和力学性能影响。结果表明:这种纳米贝氏体钢低温等温淬火后的组织,由纳米结构的贝氏体铁素体板条、残余奥氏体和少量的马氏体组成。随着等温淬火温度的提高相变速率随之提高,贝氏体铁素体的体积分数增大。随着等温淬火时间的延长,贝氏体铁素体的体积分数增大而过冷奥氏体的量减少,在室温下生成的块状M/A岛的尺寸减小和体积分数降低,碳的配分使过冷奥氏体的稳定性提高,M/A岛中的脆性马氏体比例大幅度降低,拉伸断口由混合型断裂向准解理断裂转变。将这种钢在230℃保温48 h后强塑性匹配最佳,其抗拉强度和屈服强度分别达到1625和1505 MPa,延伸率达到34.5%。

关键词 金属材料等温淬火微观组织力学性能纳米贝氏体铁素体残余奥氏体    
Abstract

Based on Thermo-Calc calculation, a nanostructured bainite steel, which is suitable for making steel wire, with composition of Fe-0.8C-2Mn-1.5Si-1.5Cr-0.25Mo-0.25Ni-1Al-0.25Co-0.1V was designed. The influence of austempering treatment on microstructure and mechanical properties of the steel was investigated by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM), thermal dilatometer, and tensile tester in terms of microstructures, thermal and mechanical properties etc. Results show that after austempering at lower temperature, the microstructure of the nanostructured bainitic steel is composed of nanostructured bainite ferrite lath, retained austenite and a little proportion of martensite. With the increase of austempering temperature, the transformation rate and the volume fraction of bainite ferrite increase. As the austempering time increases, the volume fraction of bainite ferrite increases, while the amount of undercooled austenite decreases, and the size and volume fraction of the massive M/A islands obtained at room temperature decrease. Due to the carbon partitioning sufficiently between the bainite ferrite and austenite, the stability of undercooled austenite is improved, and the proportion of brittle martensite in M/A islands is reduced significantly. This induces the transition of tensile fracture from mixed fracture to quasi-cleavage fracture. After being heated at 230oC for 48 hours, the tensile strength and yield strength of the experimental steel were 1625 and 1505 MPa, respectively, with an elongation of 34.5%, indicating the best match for strength and toughness.

Key wordsmetallic materials    austempering    microstructure    mechanical properties    nanostructured bainite ferrite    retained austenite
收稿日期: 2023-07-25     
ZTFLH:  TG142.1  
基金资助:辽宁省博士后创新基金(2020-BS-010)
通讯作者: 蒋中华,副研究员,zhjiang12s@imr.ac.cn,研究方向为特殊钢与热处理;
张玉妥,教授,ytzhang@imr.ac.cn,研究方向为金属材料制备工艺
Corresponding author: JIANG Zhonghua, Tel: 18204080610, E-mail: zhjiang12s@imr.ac.cn;
作者简介: 王玉钊,男,1999年生,硕士生
CSiMnMoCrNiAlCoVFe
0.791.552.040.251.560.250.950.250.10Bal.
表1  实验钢的化学成分
图1  实验钢的膨胀量-温度曲线
图2  等温淬火工艺示意图
图3  拉伸试样的示意图
图4  不同等温淬火工艺实验钢的贝氏体相变曲线
图5  不同等温淬火工艺实验钢的SEM照片
图6  在270℃等温淬火后实验钢的典型显微组织TEM明场像
图7  在不同温度淬火等温48h后实验钢局部组织的 EBSD 图
图8  在不同等温淬火后实验钢的XRD谱
Austempering treatmentsVolume fraction of retained austenite / %Carbon content in retained austenite / %Volume fraction of M/A island / %
Temperature / oCTime / h
230828.9 ± 2.01.72 ± 0.04113.56 ± 5.71
1636.9 ± 2.51.81 ± 0.0222.15 ± 0.54
4841.1 ± 0.81.80 ± 0.0081.29 ± 0.42
270830.3 ± 5.21.45 ± 0.0597.99 ± 1.29
1634.1 ± 0.31.74 ± 0.0396.36 ± 2.30
4845.6 ± 1.81.73 ± 0.0184.29 ± 0.96
表2  在不同等温淬火条件下残余奥氏体的体积分数、残余奥氏体中碳含量和M/A岛的体积分数
图9  等温淬火工艺不同的实验钢的真应力-应变曲线
Austempering treatmentsTensile strength / MPaYield strength / MPaElongation / %
Temperature / oCTime / h
23081872 ± 14.81220 ± 2.117.5 ± 0.35
161667 ± 0.711524 ± 23.227.5 ± 0.71
481625 ± 4.21505 ± 24.234.5 ± 3.89
27081804 ± 43.11771 ± 0.72 ± 0.1
161773 ± 0.71556 ± 59.821.5 ± 0.1
481836 ± 0.71714 ± 1.418 ± 0.35
表3  不同等温淬火工艺实验钢的拉伸性能
图10  不同等温淬火工艺实验钢的拉伸断口SEM照片
1 Su J, Ding Y L, Yang Z Y, et al. Development of nanostructured bainite transformation acceleration technology [J]. J. Iron Steel Res., 2022, 34(10): 1023
doi: 10.13228/j.boyuan.issn1001-0963.20210414
1 苏 杰, 丁雅莉, 杨卓越 等. 纳米贝氏体钢相变加速技术开发进展 [J]. 钢铁研究学报, 2022, 34(10): 1023
2 Bhadeshia H K D H. The first bulk nanostructured metal [J]. Sci. Technol. Adv. Mater., 2013, 14: 1
3 Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon [J]. Mater. Sci. Eng. A, 2012, 549(15): 185
4 Bhadeshia H K D H. Nanostructured bainite [J]. Proceedings of the Royal Society A, 2010, 466: 3
5 Kumar A, Singh A. Microstructural effects on the sub-critical fatigue crack growth in nanobainite [J]. Mater. Sci. Eng. A, 2019, 743(16): 464
6 Ling Y, Hu F, Yan H, et al. Microstructural transformation and plasticity mechanism of 2 GPa medium-carbon medium-manganese nano-bainitic steel [J]. Iron & Steel, 2022, 57(11): 131
6 凌 雨, 胡 锋, 严 恒 等. 2 GPa中碳中锰纳米贝氏体钢的相变和塑性机理 [J]. 钢铁, 2022, 57(11): 131
7 Feng F F, Wu H B, Yu X P. Thermal stability of nanoscale bainite/martensite steel [J]. Chin. J. Mater. Res., 2019, 33(8): 6
7 冯凡凡, 武会宾, 于新攀. 纳米贝氏体/马氏体钢的热稳定性 [J]. 材料研究学报, 2019, 33(8): 6
8 Kumar A, Singh A. Deformation mechanisms in nanostructured bainitic steels under torsion [J]. Mater. Sci. Eng. A, 2020, 770(7):138528
9 Dijk NHV, Butt AM, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling [J]. Acta Mater., 2005, 53(20): 5439
10 De Knijf D, Petrov R, Foejer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng. A, 2014, 615(6): 107
11 Turteltaub S, Suiker A S J. Grain size effects in multiphase steels assisted by transformation-induced plasticity [J]. Int. J. Solids. Struct., 2006, 43(24): 7322
12 Luo P, Gao G H, Zhang H, et al. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process [J]. Mater. Sci. Eng. A, 2016, 661: 1
13 Avishan B, Yazdani S, Nedjad S H. Toughness variations in nanostructured bainitic steels [J]. Mater. Sci. Eng. A, 2012, 548: 106
14 Kumar A, Singh A. Improvement of strength-toughness combination in nanostructured bainite [A]. Proceedings of the 22nd European Conference on Fracture (ECF)-Loading and Environmental Effects on Structural Integrity [C]. Belgrade, 2018
15 Caballero F G, Garcia-Mateo C, Miller M K. Design of novel bainitic steels: moving from ultrafine to nanoscale structures [J]. JOM, 2014, 66(5): 747
16 Agrawal M, Bhuyan D, Pandey R K, et al. Effect of electropulsing on nanostructured bainitic steel [J]. J. Mater. Eng. Perform., 2022, 31(5): 4187
17 Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans. A, 2005, 36A(12) : 3281
18 Rementeria R, Capdevila C, Dominguea-Reyes R, et al. Carbon clustering in low-temperature bainite [J]. Metall. Mater. Trans. A, 2018, 49A(11) : 5277
19 Gupta S K, Manna R, Chattopadhyay K. Ductilization of high carbon, high silicon carbide-free nanostructured bainitic steel [J]. Mater. Sci. Eng. A, 2022, 860(6): 144318
20 Morales-Rivas L, Yen H W, Huang B M, et al. Tensile response of two nanoscale bainite composite-like structures [J]. JOM, 2015, 67(10): 2223
21 Ding R, Dai Z, Huang M, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel [J]. Acta Mater., 2018, 147: 59
22 Jeom Y C, Jung H J, Si W H, et al. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition [J]. Mater. Sci. Eng. A, 2011, 528: 6012
[1] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[2] 王仲楠, 郭慧, 母悦山. 基于多巴胺改性纳米复合水凝胶的制备和性能[J]. 材料研究学报, 2024, 38(4): 269-278.
[3] 李云飞, 王金贺, 张龙, 李正坤, 付华萌, 朱正旺, 李宏, 王爱民, 张海峰. 退火温度对Fe35Ni30Cr20Al10Nb5 高熵合金的组织结构和性能的影响[J]. 材料研究学报, 2024, 38(4): 241-247.
[4] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[5] 吴厚燃, 段体岗, 马力, 邵刚勤, 张恒宇, 张海兵. 铝空气电池Al-Zn-In-Mg-Ga-Mn合金阳极的电化学性能[J]. 材料研究学报, 2024, 38(4): 257-268.
[6] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[7] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[8] 闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
[9] 刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
[10] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
[11] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[13] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[14] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[15] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.