Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (6): 410-422    DOI: 10.11901/1005.3093.2023.383
  研究论文 本期目录 | 过刊浏览 |
氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能
王伟1(), 常文娟1, 吕凡凡1, 解泽磊1, 于呈呈2
1.西安建筑科技大学冶金工程学院 西安 710055
2.季华实验室 佛山 528200
Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive
WANG Wei1(), CHANG Wenjuan1, LV Fanfan1, XIE Zelei1, YU Chengcheng2
1.Xi'an University of Architecture and Technology College of Metallurgical Engineering, Xi'an 710055, China
2.Jihua Laboratory, Foshan 528200, China
引用本文:

王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
Wei WANG, Wenjuan CHANG, Fanfan LV, Zelei XIE, Chengcheng YU. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. Chinese Journal of Materials Research, 2024, 38(6): 410-422.

全文: PDF(26848 KB)   HTML
摘要: 

对NH4F氟源进行恒温磁力搅拌和球磨辅助氟化,制备出氟化氮化硼纳米片(F-BNNSs),在接触Ti6-Al-4V(TC4)/GCr15的条件下研究了六方氮化硼纳米片(h-BNNSs)和氟化氮化硼纳米片(F-BNNSs)作为水基润滑添加剂的摩擦学行为。结果表明,随着h-BN与NH4F的质量比从1∶2提高到1∶4这种水基润滑添加剂的平均摩擦系数先由0.3135降低到0.1435然后提高到0.2177。h-BN与NH4F的质量比为1∶3时的F-BNNSs12其摩擦系数和磨损率比h-BNNSs分别降低了55%和75%。基于磨损痕迹的分析结果表明,F-BNNSs12良好的减磨耐磨性能可归因于:1、纳米片层间相互作用的减弱使相对滑动变得容易;2、F-BNNSs12的不相称纳米棒-纳米片结构形成滚动摩擦使其润滑性能良好;3、F-BNNSs12沉积在摩擦副表面生成不连续的润滑膜,避免了与摩擦副的直接接触。

关键词 无机非金属材料六方氮化硼氟化氮化硼纳米片水基润滑添加剂摩擦学性能    
Abstract

Hexagonal boron nitride (h-BN) is a typical layered structure material with enormous potential in the field of friction and lubrication. Fluorinated boron nitride nanosheets (F-BNNSs) were prepared by constant temperature magnetic stirring and ball mill-assisted fluorination using NH4F as fluorine sourced, while h-BN as raw material. Tribological behavior of hexagonal boron nitride nanosheets (h-BNNSs) and F-BNNSs as water-based lubricant additives were evaluated under Ti6-Al-4V(TC4)/GCr15 contact conditions. The results showed that when as water based liblicant additives, the F-BNNSs prepared with the mass ratio of h-BN to NH4F increased from 1:2 to 1:4, the resulted average coefficients of friction (COFs) varied from 0.3135 to 0.1435 to 0.2177. When the mass ratio of h-BN and NH4F was 1:3, the COFs and wear rate of F-BNNSs12 prepared were 55% and 75% lower than that of h-BNNSs, respectively. Based on the analysis of wear scars, it were found that the excellent friction reduction and anti-wear performance of F-BNNSs12 can be attributed to three aspects: The weakening polar interactions between the nanosheet layers may facilitate the relative slidding; F-BNNSs12 incommensurate nanorod-nanosheet structure may cause rolling friction and good lubrication performance; F-BNNSs12 deposited on the surface of the friction pair favour forminga discontinuous lubricating film, to alleviate the direct contact for the friction pair.

Key wordsinorganic non-metallic materials    hexagonal boron nitride    fluorinated boron nitride nanosheets    water-based lubrication additives    tribological properties
收稿日期: 2023-08-11     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51975450);陕西省科技新星基金(2021KJXX-32);西安市创新能力强基计划-先进制造技术攻关项目(21XJZZ0031);陕西省教育厅服务地方专项(22JC047);陕西省重点研发计划(2023-YBGY-383)
通讯作者: 王伟,教授,gackmol@163.com,研究方向为材料加工中的摩擦与润滑
Corresponding author: WANG Wei, Tel: 13609264618, E-mail: gackmol@163.com
作者简介: 王 伟,男,1985年生,博士
图1  F-BNNSs制备过程的示意图
Radius / mmLoad / NLinear velocity / mm·s-1Time / minConcentration / mg·mL-1
68, 10,12, 1550100.5, 1, 1.5, 2
表1  摩擦实验参数
图2  F-BNNSs的XRD谱以及局部放大和F-BNNSs的红外光谱
图3  F-BNNS的XPS图和F-BNNSs12的窄谱
图4  h-BNNSs和F-BNNSs的SEM照片
图5  F-BNNSs12的TEM、SAED图像和粒径统计
图6  NH4F氟化h-BN原理图
图7  F-BNNSs水基润滑添加剂的 Zeta 电位值和接触角
图8  h-BNNSs和F-BNNSs的摩擦学性能
图9  h-BNNSs和F-BNNSs的磨损表面SEM图像
图10  不同载荷下磨损表面的SEM照片
图11  TC4盘磨痕表面的磨损轨道、三维轮廓图和二维高度轮廓曲线
图12  1 mg/mL F-BNNSs12水基润滑磨损表面的Raman谱和XPS谱
1 Dong S W, Wang W, Gao Y, et al. Tribological properties of different-sized black phosphorus nanosheets as water-based lubrication additives for steel/titanium alloy wear contact [J]. Metals, 2022, 12(2): 288
2 Chen J, Liu D, Jin T, et al. A novel bionic micro-textured tool with the function of directional cutting-fluid transport for cutting titanium alloy [J]. J. Mater. Process. Technol., 2023, 311: 117816
3 Wu G, Li G, Pan W, et al. Experimental investigation of eco-friendly cryogenic minimum quantity lubrication (CMQL) strategy in machining of Ti-6Al-4V thin-wall part [J]. J. Clean. Prod., 2022, 357: 131993
4 Liu Z, Zhu G, Dai J, et al. Cellulose nanocrystals as sustainable additives in water-based cutting fluids [J]. Carbohydr. Polym., 2022, 298: 120139
5 Awang N W, Ramasamy D, Kadirgama K, et al. Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil [J]. Int. J. Heat Mass Transf., 2019, 131: 1196
6 Yang Y, Si L N, Zhang C H. Problems and perspectives of titanium alloy lubrication in cutting process [J]. Lubr. Eng., 2022, 46(5):118
6 杨 晔, 司丽娜, 张晨辉. 钛合金切削润滑研究现状与发展趋势[J]. 润滑与密封, 2022, 46(5): 118
7 Yu B, Zou K, Wang R, et al. Tribological properties of quaternary ammonium salt polymeric ionic liquids as water-based lubricant additive [J]. Tribology, 2022, 42(6): 1246
7 于 波, 邹 坤, 王 睿 等. 季铵盐聚离子液体作为水基润滑添加剂的摩擦学性能研究 [J]. 摩擦学学报, 2022, 42(6): 1246
8 Dong R, Yu Q, Bai Y, et al. Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids [J]. Chem. Eng. J., 2020, 383: 123201
9 Li C, Tang W, Tang X Z, et al. A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems [J]. Tribol. Int., 2022, 167: 107356
10 Lawal S A, Choudhury I A, Nukman Y. Evaluation of vegetable and mineral oil-in-water emulsion cutting fluids in turning AISI 4340 steel with coated carbide tools [J]. J. Clean. Prod., 2014, 66: 610
11 Wang Y X, Hu Y W, Zhao H C, et al. Research progress of graphene as additive of water-based lubricants [J]. Mater. Rev., 2021, 35(19): 19055
11 王永欣, 胡艺纹, 赵海超 等. 石墨烯基水润滑添加剂研究进展 [J]. 材料导报, 2021, 35(19): 19055
12 Singh Y, Abd Rahim E, Singh N K, et al. Friction and wear characteristics of chemically modified mahua (madhuca indica) oil based lubricant with SiO2 nanoparticles as additives [J]. Wear, 2022, 508: 204463
13 Tang G, Su F, Xu X, et al. 2D black phosphorus dotted with silver nanoparticles: An excellent lubricant additive for tribological application [J]. Chen. Eng. J., 2020, 392: 123631
14 Hu T, Zhang Y, Hu L. Tribological investigation of MoS2 coatings deposited on the laser textured surface [J]. Wear, 2012, 278: 77
15 Bai C, Yang Z, Zhang J, et al. Friction behavior and structural evolution of hexagonal boron nitride: A relation to environmental molecules Containing- OH functional group [J]. ACS Appl. Mater. Interfaces., 2022, 14(16): 19043
16 Liang S, Shen Z, Yi M, et al. In-situ exfoliated graphene for high-performance water-based lubricants [J]. Carbon, 2016, 96: 1181
17 Guo P, Qi S, Chen L, et al. Black phosphorus-graphene oxide hybrid nanomaterials toward advanced lubricating properties under water [J]. Adv. Mater. Interfaces, 2019, 6(23): 1901174
18 Wang W, Dong S, Gao Y, et al. Tribological behaviours of black phosphorus/MoS2 composites as water‐based lubrication additives [J]. Lubr. Sci, 2021, 33(7): 404
19 Hao L, Hao W, Li P, et al. Friction and wear properties of a nanoscale ionic liquid-like GO@ SiO2 hybrid as a water-based lubricant additive [J]. Lubricants, 2022, 10(6): 125
20 Bondarev A V, Fraile A, Polcar T, et al. Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: Experimental study and molecular dynamics simulation [J]. Tribol. Int., 2020, 151: 106493
21 Bai Y, Zhang J, Wang Y, et al. Ball milling of hexagonal boron nitride microflakes in ammonia fluoride solution gives fluorinated nanosheets that serve as effective water-dispersible lubricant additives [J]. ACS Appl. Nano Mater., 2019, 2(5): 3187
22 Cho D H, Kim J S, Kwon S H, et al. Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water[J]. Wear, 2013, 302(1-2): 981
23 Meng F S, Li Z, Ding H H, et al. Study on the preparation and tribological properties of BN@C-OA nano-additive lubricants [J]. Wear, 2021, 474: 203876
24 Tian Q, Jia X, Zhang Y, et al. In-situ growth of amorphous carbon on sucrose-assisted exfoliated boron nitride nanosheets: Exceptional water dispersibility and lubrication performance [J]. Tribol. Int., 2022, 173: 107647
25 Talib N, Nasir R M, Rahim E A. Tribological behaviour of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes [J]. J. Clean. Prod., 2017, 147: 360
26 Khan M H, Liu H K, Sun X, et al. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications[J]. Mater. Today, 2017, 20(10): 611
27 Caneva S, Weatherup R S, Bayer B C, et al. Controlling catalyst bulk reservoir effects for monolayer hexagonal boron nitride CVD [J]. Nano Lett., 2016, 16(2): 1250
doi: 10.1021/acs.nanolett.5b04586 pmid: 26756610
28 Li X, Hao X, Zhao M, et al. Exfoliation of hexagonal boron nitride by molten hydroxides [J]. Adv. Mater., 2013, 25(15): 2200
29 Warner J H, Rummeli M H, Bachmatiuk A, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation [J]. ACS Nano, 2010, 4(3): 1299
doi: 10.1021/nn901648q pmid: 20148574
30 Zheng Z, Cox M, Li B. Surface modification of hexagonal boron nitride nanomaterials: a review [J]. J. Mater. Sci., 2018, 53: 66
31 Zhang Z, Zeng X C, Guo W. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism [J]. J. Am. Chem. Soc., 2011, 133(37): 14831
doi: 10.1021/ja206703x pmid: 21834534
32 Zhao Y, Wu X, Yang J, et al. Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study [J]. Phys. Chem. Chem. Phys., 2012, 14(16): 5545
doi: 10.1039/c2cp40081b pmid: 22407363
33 Wei L, Zhang B, Cao Z Y, et al. Effect of fluorine content on structure and tribological properties of diamond-like carbon films [J]. China Surf. Eng., 2013, 26(2): 66
33 魏 利, 张 斌, 曹忠跃 等. 氟含量对类金刚石薄膜结构及摩擦学性能的影响 [J]. 中国表面工程, 2013, 26(2): 66
34 Xue Y, Liu Q, He G, et al. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets [J]. Nanoscale Res. Lett., 2013, 8: 1
35 Zhang J, Bai Y, An L, et al. Reduction of interlayer friction between bilayer hexagonal boron nitride nanosheets induced by electron redistribution [J]. J. Appl. Phys., 2019, 126(3): 35104
36 Ma Y, Gao L, Song A, et al. Preservation of the frictional properties of h-BN under chemical modification in the presence of a commensurate Ni (1 1 1) substrate [J]. Comput. Mater. Sci., 2019, 165: 82
37 Wang W, Zhang G, Xie G. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives [J]. Appl. Surf. Sci., 2019, 498: 143683
38 Wang Q, Hou T, Wang W, et al. Tribological behavior of black phosphorus nanosheets as water-based lubrication additives [J]. Friction, 2022: 1
39 Chu J H, Tong L B, Wang W, et al. Sequentially bridged biomimetic graphene-based coating via covalent bonding with an effective anti-corrosion/wear protection for Mg alloy [J]. Colloids Surf., 2021, 610: 125707
40 Fildes J M, Meyers S J, Mulligan C P, et al. Evaluation of the wear and abrasion resistance of hard coatings by ball-on-three-disk test methods—A case study [J]. Wear, 2013, 302(1-2): 1040
41 Ul Ahmad A, Liang H, Abbas Q, et al. A novel mechano-chemical synthesis route for fluorination of hexagonal boron nitride nanos-heets [J]. Ceram. Int., 2019, 45(15): 19173
42 Du M, Li X, Wang A, et al. One‐step exfoliation and fluorination of boron nitride nanosheets and a study of their magnetic properties [J]. Angew. Chem. Int. Edit., 2014, 53(14): 3645
43 Sudeep P M, Vinod S, Ozden S, et al. Functionalized boron nitride porous solids [J]. RSC advances, 2015, 5(114): 93964
44 Radhakrishnan S, Das D, Samanta A, et al. Fluorinated h-BN as a magnetic semiconductor [J]. Sci. Adv., 2017, 3(7): e1700842
45 Fan X, Gan C, Feng P, et al. Controllable preparation of fluorinated boron nitride nanosheets for excellent tribological behaviors [J]. Chem. Eng. J., 2022, 431: 133482
46 Li W, Zheng S, Cao B, et al. Friction and wear properties of ZrO2/SiO2 composite nanoparticles [J]. J. Nanopart. Res., 2011, 13(5): 2129
47 Hou T L. Preparation and tribological behavior of nano-BP/TiO2 lubrication additives [D]. Xi'an: Xi'an University of Architecture and Technology, 2021
47 侯婷丽. BP/TiO2复合纳米润滑添加剂的制备及摩擦学行为研究 [D]. 西安: 西安建筑科技大学, 2021
48 Guo Y, Qiu J, Guo W. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization [J]. Nanoscale, 2016, 8(1): 575
doi: 10.1039/c5nr05806f pmid: 26645099
49 Peng D, Chen C, Kang Y, et al. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant [J]. Ind. Lubr. Tribol., 2010, 62(2): 111
50 Hooke C J. The elastohydrodynamic lubrication of heavily loaded contacts [J]. J. Mech. Eng. Sci., 1977, 19(4): 149
51 Bai C, Lai Z, Yu Y, et al. Rich activated edges of hexagonal boron nitride flakes in-situ triggered by nickel nanoparticles to achieve efficient reduction of friction and wear [J]. Compos. B. Eng., 2022, 234: 109710
52 Fan K, Chen X, Wang X, et al. Toward excellent tribological performance as oil-based lubricant additive: particular tribological behavior of fluorinated graphene [J]. ACS Appl. Mater. Interfaces, 2018, 10(34): 28828
53 Podgornik B, Sedlaček M, Mandrino D. Performance of CrN coatings under boundary lubrication [J]. Tribol Int, 2016, 96: 247
54 Kong S, Hu W J, Li J S. Tribological properties of graphene in PAO base oil [J]. China Surf. Eng., 2019, 32(03): 162
54 孔 尚, 胡文敬, 李久盛. 石墨烯在PAO基础油中的摩擦学性能 [J]. 中国表面工程, 2019, 32(03): 162
55 Liu C, Tang G, Su F, et al. Functionalised h‐BN as an effective lubricant additive in PAO oil for MoN coating sliding against Si3N4 ball [J]. Lubr. Sci., 2021, 33(2): 33
[1] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[2] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[3] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[4] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[5] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[6] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[8] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[9] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[10] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[11] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[14] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[15] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.