Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (10): 731-738    DOI: 10.11901/1005.3093.2022.574
  研究论文 本期目录 | 过刊浏览 |
增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响
谢东航1,3, 潘冉2, 朱士泽3, 王东3(), 刘振宇3, 昝宇宁3, 肖伯律3, 马宗义3
1.沈阳理工大学材料科学与工程学院 沈阳 110159
2.中国航空制造技术研究院 北京 100024
3.中国科学院金属研究所 沈阳 110016
Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites
XIE Donghang1,3, PAN Ran2, ZHU Shize3, WANG Dong3(), LIU Zhenyu3, ZAN Yuning3, XIAO Bolv3, MA Zongyi3
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.AVIC Manufacturing Technology Institute, Beijing 100024, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
Donghang XIE, Ran PAN, Shize ZHU, Dong WANG, Zhenyu LIU, Yuning ZAN, Bolv XIAO, Zongyi MA. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. Chinese Journal of Materials Research, 2023, 37(10): 731-738.

全文: PDF(9733 KB)   HTML
摘要: 

用真空热压法制备不同B4C颗粒尺寸(7 μm、14 μm、20 μm)的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料,研究了增强颗粒尺寸对其微观组织和力学性能的影响。结果表明,在这三种复合材料中B4C颗粒均匀分布,B4C-Al界面反应较为轻微,未见明显的界面反应产物。三种复合材料基体中沉淀相的尺寸基本相同(约为5.5 nm)。B4C颗粒的尺寸对复合材料力学性能有较大的影响。B4C颗粒尺寸为7 μm的复合材料性能最佳,屈服强度为648 MPa,抗拉强度为713 MPa,延伸率为3.3%。随着颗粒尺寸的增大复合材料的强度和延伸率均降低。对三种复合材料的强化机制和断裂机制的分析结果表明:小尺寸B4C颗粒增强的复合材料强度较高,颗粒在变形过程中不易断裂,因此其塑性较好。

关键词 复合材料铝基粉末冶金界面反应颗粒尺寸力学性能    
Abstract

Composites 15%B4C/Al-6.5Zn-2.8Mg-1.7Cu with various size (7 μm, 14 μm, 20 μm) of reinforced paricales B4C were prepared by powder metallurgy vacuum hot pressing method. B4C particles can be uniformly distributed in the three composite materials, and the B4C-Al interface reaction is relatively slight, and no obvious interfacial reaction products are observed. In the matrix of the three composites, the size of the precipitates is basically the same, all of which are about 5.5 nm. When the B4C particle size is 7 μm, the composite has the best performance, i.e., yield strength of 648 MPa, tensile strength of 713 MPa and elongation of 3.3%. With the increase of particle size, the strength and elongation of the composites decreased. The strengthening mechanism and fracture mechanism of the three composites were analyzed, and the results showed that the composite reinforced with smaller B4C particles had higher strength. The particles are not easy to break during deformation, so they have better plasticity.

Key wordscomposites    Al alloy matrix    powder metallurgy    interface reaction    particle size    mechanical properties
收稿日期: 2022-10-31     
ZTFLH:  TB333  
基金资助:国家重点研发计划(2021YFA1600704);北京自然科学基金(3214053);辽宁省兴辽英才计划(XLYC2007009)
通讯作者: 王东,研究员,dongwang@imr.ac.cn,研究方向为铝基复合材料
Corresponding author: WANG Dong, Tel: (024)23971752, E-mail: dongwang@imr.ac.cn
作者简介: 谢东航,男,1998年生,硕士生
图1  增强相尺寸不同的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料的OM图
图2  增强相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料的SEM形貌和EDS图
图3  增强相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料人工时效态的XRD谱
图4  增强相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料人工时效态沉淀相的TEM形貌

Particle

size

/ μm

Tensile strength

/ MPa

Yield strength

/ MPa

Elongation

/%

7714±12648±113.3±0.9
14681±3622±82.0±0.1
20637±1610±91.0±0.1
表1  不同颗粒尺寸B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料的拉伸性能
图5  不同颗粒尺寸的B4C/Al-6.5Zn-2.8Mg-1.7Cu复合材料断口的SEM形貌
1 Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Materials China., 2010, 29 (4): 1
1 张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
2 Czerwinski F. Current trends in automotive light-weighting strategies and materials [J]. Materials., 2021, 14(21): 6631
doi: 10.3390/ma14216631
3 Stoyakina E. A. Mechanical properties of aluminium-matrix composite materilas reinforced with SiC Particles, depending on the matrix alloy [C]. Trudy VIAM., 2018
4 Jin P, Liu Y, Li S, et al. Aerospace applications of particulate reinforced aluminum matrix composites [J]. Mater Reports., 2009, 23(11): 24
4 金 鹏, 刘 越, 李 曙, 肖伯律. 颗粒增强铝基复合材料在航空航天领域的应用 [J]. 材料导报, 2009, 23(11): 24
5 Zeng M X, Liu Z M, Li W T, et al. Property of Al-Zn-Mg-(Cu) alloy after linear heating aging treatment [J]. Chin.J.Mater. Res., 2015, 29(3): 235
5 曾苗霞, 林振铭, 李文涛, 等. Al-Zn-Mg-(Cu)合金线性升温时效后的性能 [J]. 材料研究学报, 2015, 29(3): 235
doi: 10.11901/1005.3093.2014.494
6 Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys:A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
doi: 10.1016/j.jallcom.2018.11.286
7 Ravi Kumar N V, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCP composites [J]. Composites: Part A., 2000, 31: 1139
doi: 10.1016/S1359-835X(00)00062-2
8 Kulkarni M D, Robi P S, Prasad P C, et al. Fracture toughness and fractography of cast and extruded 7075 Al-SiC particulate composites [J]. Scripta Mater., 1994, 31(3):237
doi: 10.1016/0956-716X(94)90276-3
9 Manoharan M, Lewandowski J J. Crack initiation and growth toughness of an aluminum metal-matrix composite [J]. Acta Metall Mater., 1990, 38(3): 489
doi: 10.1016/0956-7151(90)90155-A
10 Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu Composites[J]. Mater.Charact., 2019, 158: 109966
11 Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites [J]. Acta Metall Sin, 2019, 55(10): 1319
doi: 10.11900/0412.1961.2018.00523
11 马国楠, 王 东, 刘振宇, 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响 [J]. 金属学报, 2019, 55(10): 1319
doi: 10.11900/0412.1961.2018.00523
12 Canakci A, Arslan F, Yasar I. Pre-treatment process of B4C particles to improve incorporation into molten AA2014 alloy [J]. J. Mater. Sci., 2007, 42: 9536
doi: 10.1007/s10853-007-1896-z
13 Esther I, Dinaharan I, Murugan N. Microstructure and sliding wear characterization of submicron and nanometric boron carbide particulate reinforced AA2124 aluminum matrix composites prepared by stir casting [J]. Mater. Res. Express., 2019(6): 0865i3
14 Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Materials Chemistry and Physics, 2015, 154: 107
doi: 10.1016/j.matchemphys.2015.01.052
15 Gao M Q, Chen Z N, Kang H J, et al. Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures [J]. J. Mater. Sci. Technol., 2019, 35(8): 1523
doi: 10.1016/j.jmst.2019.03.040
16 Sharma A, Tirumuruhan B, G Set al Muthuvel. Optimization of process parameters of boron carbide-reinforced Al-Zn-Mg-Cu matrix composite produced by pressure assisted sintering [J]. J. Mater. Eng. Perform., 2022, 31(1): 328
doi: 10.1007/s11665-021-06210-4
17 Sharma A, Sai S K V, Mrinal D, et al. Ballistic performance of functionally graded boroncarbide reinforced Al-Zn-Mg-Cu alloy [J]. J. Mater. Sci. Technol., 2022, 18: 4042
18 Wu C D, Fang P, Luo G Q. Effect of plasma activated sintering parameters on microstructure and mechanical properties of Al-7075/B4C composites [J]. J. Alloys Compd., 2014, 615: 276
doi: 10.1016/j.jallcom.2014.06.110
19 Ye T K, Xu Y X, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mat. Sci. Eng. A., 2019, 753: 146
doi: 10.1016/j.msea.2019.03.037
20 Viala J C, Bouix J. Chemical reactivity of aluminium with boron carbide [J]. J. Mater. Sci., 1997, 32: 4559
doi: 10.1023/A:1018625402103
21 Pyzik A J, Beaman D R. Al-B-C phase development and effects on mechanical properties of B4C/Al derived composites [J]. J Am. Ceram. Soc., 1995, 78(2): 305
doi: 10.1111/jace.1995.78.issue-2
22 Li Y Z, Wang Q Z, Wang W G, et al. Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites [J]. Mat. Sci. Eng. A., 2015, 620: 445
doi: 10.1016/j.msea.2014.10.025
23 Li Y, Deng Y L, Fan S T, et al. An in-situ study on the dissolution of intermetallic compounds in the Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 829: 154612
doi: 10.1016/j.jallcom.2020.154612
24 Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy(7050) [J]. Acta Mater., 2004, 52(15): 4503
doi: 10.1016/j.actamat.2004.06.025
25 Curle U A, Cornish L A, Govender G. Predicting yield strengths of Al-Zn-Mg-Cu-(Zr) aluminum alloys based on alloy composition or hardness [J]. Mater.Des., 2016, 99: 211
26 Li G, Wang F F, Zheng R, et al. Microstructural evolution and strengthening mechanism of Al alloy matrix composites by applied high pulsed electromagnetic field [J]. Chin. J. Mater. Res., 2016, 30(10): 745
doi: 10.11901/1005.3093.2015.173
26 李桂荣, 王芳芳, 郑瑞, 等.脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制 [J]. 材料研究学报, 2016, 30(10): 745
doi: 10.11901/1005.3093.2015.173
27 Zou Y, Wu X D, Tang S B, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85: 106
doi: 10.1016/j.jmst.2020.12.045
28 Won Sung-Jae, Soa Hyeongsub, Kang Leeseung, et al. Development of a high-strength Al-Zn-Mg-Cu-based alloy via multi-strengthening mechanisms [J]. Scr. Mater, 2021, 205: 114216
doi: 10.1016/j.scriptamat.2021.114216
29 Preet M, Singh, John J. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy [J]. Metallurgical Transactions A., 1993, 24: 2531
doi: 10.1007/BF02646532
30 Suh Y S, Joshi S P, Ramesh K T. An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites [J]. Acta Mater., 2009, 57: 5848
doi: 10.1016/j.actamat.2009.08.010
31 Xiang Z B, Nie J H, Wei S H, et al. Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites [J]. Chin. J. Mater. Res., 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
31 向兆兵, 聂俊辉, 魏少华, 等. 增强颗粒与基体适配性对颗粒增强铝基 复合材料强化机理的影响 [J]. 材料研究学报, 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
32 Kok M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites [J]. J.Mater.Process Technol., 2005, 161: 381
33 Yang Z Y, Fan J Z, Liu Y Q, et al. Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites [J]. Materials., 2021, 14: 675
doi: 10.3390/ma14030675
34 Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites [J]. Mat. Sci. Eng. A. Struct., 2018, 711: 643
doi: 10.1016/j.msea.2017.11.068
35 Xiao B L, Bi J, Zhao M J, et al. Effects of SiCp size on tensile property of aluminum matrix composites fabricated by powder metallurgical method [J]. Acta.Metall Sin., 2002, 38(9): 1006
35 肖伯律, 毕 敬, 赵明久, 等. 碳化硅尺寸对铝基复合材料拉伸性能和断裂机制的影响 [J]. 金属学报, 2002, 38(9): 1006.
36 Jin P, Liu Y, Lin S, et al. Effects of SiC particle size on tensile property and fracture behavior on partile reinforced aluminum metal matrix composites [J]. Chin. J. Mater. Res., 2009, 23(2): 211
36 金 鹏, 刘 越, 李 曙, 等. 碳化硅增强铝基复合材料的力学性能和断裂机制 [J]. 材料研究学报, 2009, 23(2): 211
37 Ma G N, Wang D, Xiao B L. Efect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites [J]. Acta. Metall. Sin., 2021, 34: 1447
doi: 10.1007/s40195-021-01254-w
38 Liu R X, Wu C D, Zhang J, et al. Microstructure and mechanical behaviors of the ultrafine grainedAA7075/B4C composites synthesized via one-step consolidation [J]. J. Alloys Compd., 2018, 748: 737
doi: 10.1016/j.jallcom.2018.03.152
39 Wen H, Topping T D, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering [J]. Acta Mater., 2013, 61(8): 2769
doi: 10.1016/j.actamat.2012.09.036
40 Bembalge O B, Panigrahi S K. Development and strengthening mechanisms of bulk ultrafine grained AA6063/SiC composite sheets with varying reinforcement size ranging from nano to micro domain [J]. J. Alloys Compd., 2018, 766: 355
doi: 10.1016/j.jallcom.2018.06.306
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.