|
|
增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响 |
谢东航1,3, 潘冉2, 朱士泽3, 王东3(), 刘振宇3, 昝宇宁3, 肖伯律3, 马宗义3 |
1.沈阳理工大学材料科学与工程学院 沈阳 110159 2.中国航空制造技术研究院 北京 100024 3.中国科学院金属研究所 沈阳 110016 |
|
Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites |
XIE Donghang1,3, PAN Ran2, ZHU Shize3, WANG Dong3(), LIU Zhenyu3, ZAN Yuning3, XIAO Bolv3, MA Zongyi3 |
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China 2.AVIC Manufacturing Technology Institute, Beijing 100024, China 3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
Donghang XIE,
Ran PAN,
Shize ZHU,
Dong WANG,
Zhenyu LIU,
Yuning ZAN,
Bolv XIAO,
Zongyi MA.
Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. Chinese Journal of Materials Research, 2023, 37(10): 731-738.
1 |
Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Materials China., 2010, 29 (4): 1
|
1 |
张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
|
2 |
Czerwinski F. Current trends in automotive light-weighting strategies and materials [J]. Materials., 2021, 14(21): 6631
doi: 10.3390/ma14216631
|
3 |
Stoyakina E. A. Mechanical properties of aluminium-matrix composite materilas reinforced with SiC Particles, depending on the matrix alloy [C]. Trudy VIAM., 2018
|
4 |
Jin P, Liu Y, Li S, et al. Aerospace applications of particulate reinforced aluminum matrix composites [J]. Mater Reports., 2009, 23(11): 24
|
4 |
金 鹏, 刘 越, 李 曙, 肖伯律. 颗粒增强铝基复合材料在航空航天领域的应用 [J]. 材料导报, 2009, 23(11): 24
|
5 |
Zeng M X, Liu Z M, Li W T, et al. Property of Al-Zn-Mg-(Cu) alloy after linear heating aging treatment [J]. Chin.J.Mater. Res., 2015, 29(3): 235
|
5 |
曾苗霞, 林振铭, 李文涛, 等. Al-Zn-Mg-(Cu)合金线性升温时效后的性能 [J]. 材料研究学报, 2015, 29(3): 235
doi: 10.11901/1005.3093.2014.494
|
6 |
Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys:A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
doi: 10.1016/j.jallcom.2018.11.286
|
7 |
Ravi Kumar N V, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCP composites [J]. Composites: Part A., 2000, 31: 1139
doi: 10.1016/S1359-835X(00)00062-2
|
8 |
Kulkarni M D, Robi P S, Prasad P C, et al. Fracture toughness and fractography of cast and extruded 7075 Al-SiC particulate composites [J]. Scripta Mater., 1994, 31(3):237
doi: 10.1016/0956-716X(94)90276-3
|
9 |
Manoharan M, Lewandowski J J. Crack initiation and growth toughness of an aluminum metal-matrix composite [J]. Acta Metall Mater., 1990, 38(3): 489
doi: 10.1016/0956-7151(90)90155-A
|
10 |
Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu Composites[J]. Mater.Charact., 2019, 158: 109966
|
11 |
Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites [J]. Acta Metall Sin, 2019, 55(10): 1319
doi: 10.11900/0412.1961.2018.00523
|
11 |
马国楠, 王 东, 刘振宇, 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响 [J]. 金属学报, 2019, 55(10): 1319
doi: 10.11900/0412.1961.2018.00523
|
12 |
Canakci A, Arslan F, Yasar I. Pre-treatment process of B4C particles to improve incorporation into molten AA2014 alloy [J]. J. Mater. Sci., 2007, 42: 9536
doi: 10.1007/s10853-007-1896-z
|
13 |
Esther I, Dinaharan I, Murugan N. Microstructure and sliding wear characterization of submicron and nanometric boron carbide particulate reinforced AA2124 aluminum matrix composites prepared by stir casting [J]. Mater. Res. Express., 2019(6): 0865i3
|
14 |
Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Materials Chemistry and Physics, 2015, 154: 107
doi: 10.1016/j.matchemphys.2015.01.052
|
15 |
Gao M Q, Chen Z N, Kang H J, et al. Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures [J]. J. Mater. Sci. Technol., 2019, 35(8): 1523
doi: 10.1016/j.jmst.2019.03.040
|
16 |
Sharma A, Tirumuruhan B, G Set al Muthuvel. Optimization of process parameters of boron carbide-reinforced Al-Zn-Mg-Cu matrix composite produced by pressure assisted sintering [J]. J. Mater. Eng. Perform., 2022, 31(1): 328
doi: 10.1007/s11665-021-06210-4
|
17 |
Sharma A, Sai S K V, Mrinal D, et al. Ballistic performance of functionally graded boroncarbide reinforced Al-Zn-Mg-Cu alloy [J]. J. Mater. Sci. Technol., 2022, 18: 4042
|
18 |
Wu C D, Fang P, Luo G Q. Effect of plasma activated sintering parameters on microstructure and mechanical properties of Al-7075/B4C composites [J]. J. Alloys Compd., 2014, 615: 276
doi: 10.1016/j.jallcom.2014.06.110
|
19 |
Ye T K, Xu Y X, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mat. Sci. Eng. A., 2019, 753: 146
doi: 10.1016/j.msea.2019.03.037
|
20 |
Viala J C, Bouix J. Chemical reactivity of aluminium with boron carbide [J]. J. Mater. Sci., 1997, 32: 4559
doi: 10.1023/A:1018625402103
|
21 |
Pyzik A J, Beaman D R. Al-B-C phase development and effects on mechanical properties of B4C/Al derived composites [J]. J Am. Ceram. Soc., 1995, 78(2): 305
doi: 10.1111/jace.1995.78.issue-2
|
22 |
Li Y Z, Wang Q Z, Wang W G, et al. Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites [J]. Mat. Sci. Eng. A., 2015, 620: 445
doi: 10.1016/j.msea.2014.10.025
|
23 |
Li Y, Deng Y L, Fan S T, et al. An in-situ study on the dissolution of intermetallic compounds in the Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 829: 154612
doi: 10.1016/j.jallcom.2020.154612
|
24 |
Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy(7050) [J]. Acta Mater., 2004, 52(15): 4503
doi: 10.1016/j.actamat.2004.06.025
|
25 |
Curle U A, Cornish L A, Govender G. Predicting yield strengths of Al-Zn-Mg-Cu-(Zr) aluminum alloys based on alloy composition or hardness [J]. Mater.Des., 2016, 99: 211
|
26 |
Li G, Wang F F, Zheng R, et al. Microstructural evolution and strengthening mechanism of Al alloy matrix composites by applied high pulsed electromagnetic field [J]. Chin. J. Mater. Res., 2016, 30(10): 745
doi: 10.11901/1005.3093.2015.173
|
26 |
李桂荣, 王芳芳, 郑瑞, 等.脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制 [J]. 材料研究学报, 2016, 30(10): 745
doi: 10.11901/1005.3093.2015.173
|
27 |
Zou Y, Wu X D, Tang S B, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85: 106
doi: 10.1016/j.jmst.2020.12.045
|
28 |
Won Sung-Jae, Soa Hyeongsub, Kang Leeseung, et al. Development of a high-strength Al-Zn-Mg-Cu-based alloy via multi-strengthening mechanisms [J]. Scr. Mater, 2021, 205: 114216
doi: 10.1016/j.scriptamat.2021.114216
|
29 |
Preet M, Singh, John J. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy [J]. Metallurgical Transactions A., 1993, 24: 2531
doi: 10.1007/BF02646532
|
30 |
Suh Y S, Joshi S P, Ramesh K T. An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites [J]. Acta Mater., 2009, 57: 5848
doi: 10.1016/j.actamat.2009.08.010
|
31 |
Xiang Z B, Nie J H, Wei S H, et al. Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites [J]. Chin. J. Mater. Res., 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
|
31 |
向兆兵, 聂俊辉, 魏少华, 等. 增强颗粒与基体适配性对颗粒增强铝基 复合材料强化机理的影响 [J]. 材料研究学报, 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
|
32 |
Kok M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites [J]. J.Mater.Process Technol., 2005, 161: 381
|
33 |
Yang Z Y, Fan J Z, Liu Y Q, et al. Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites [J]. Materials., 2021, 14: 675
doi: 10.3390/ma14030675
|
34 |
Guo X L, Guo Q, Nie J H, et al. Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites [J]. Mat. Sci. Eng. A. Struct., 2018, 711: 643
doi: 10.1016/j.msea.2017.11.068
|
35 |
Xiao B L, Bi J, Zhao M J, et al. Effects of SiCp size on tensile property of aluminum matrix composites fabricated by powder metallurgical method [J]. Acta.Metall Sin., 2002, 38(9): 1006
|
35 |
肖伯律, 毕 敬, 赵明久, 等. 碳化硅尺寸对铝基复合材料拉伸性能和断裂机制的影响 [J]. 金属学报, 2002, 38(9): 1006.
|
36 |
Jin P, Liu Y, Lin S, et al. Effects of SiC particle size on tensile property and fracture behavior on partile reinforced aluminum metal matrix composites [J]. Chin. J. Mater. Res., 2009, 23(2): 211
|
36 |
金 鹏, 刘 越, 李 曙, 等. 碳化硅增强铝基复合材料的力学性能和断裂机制 [J]. 材料研究学报, 2009, 23(2): 211
|
37 |
Ma G N, Wang D, Xiao B L. Efect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites [J]. Acta. Metall. Sin., 2021, 34: 1447
doi: 10.1007/s40195-021-01254-w
|
38 |
Liu R X, Wu C D, Zhang J, et al. Microstructure and mechanical behaviors of the ultrafine grainedAA7075/B4C composites synthesized via one-step consolidation [J]. J. Alloys Compd., 2018, 748: 737
doi: 10.1016/j.jallcom.2018.03.152
|
39 |
Wen H, Topping T D, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering [J]. Acta Mater., 2013, 61(8): 2769
doi: 10.1016/j.actamat.2012.09.036
|
40 |
Bembalge O B, Panigrahi S K. Development and strengthening mechanisms of bulk ultrafine grained AA6063/SiC composite sheets with varying reinforcement size ranging from nano to micro domain [J]. J. Alloys Compd., 2018, 766: 355
doi: 10.1016/j.jallcom.2018.06.306
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|