Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (8): 590-602    DOI: 10.11901/1005.3093.2022.279
  研究论文 本期目录 | 过刊浏览 |
基于热力学模拟计算的CLF-1钢改良设计
杨栋天1,2, 熊良银1,2(), 廖洪彬3, 刘实1,2
1.中国科学院金属研究所特种合金研究部 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.核工业西南物理研究院聚变科学所 成都 610225
Improved Design of CLF-1 Steel Based on Thermodynamic Simulation
YANG Dongtian1,2, XIONG Liangyin1,2(), LIAO Hongbin3, LIU Shi1,2
1.Special Alloy Research Department, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Southwestern Institute of Physics, Institute for Fusion Science, Chengdu 610225, China
引用本文:

杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
Dongtian YANG, Liangyin XIONG, Hongbin LIAO, Shi LIU. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. Chinese Journal of Materials Research, 2023, 37(8): 590-602.

全文: PDF(17046 KB)   HTML
摘要: 

使用Thermo-Calc软件计算CLF-1钢中平衡析出相的成分和含量,研究了各平衡相中的元素分布随温度变化的规律、主元素对各相析出量、析出温度的影响,以及元素在各平衡相之间分配的规律;用透射电子显微镜(TEM)表征了添加Ti元素后析出相的尺寸和数密度。热力学计算结果表明:TaC相中C的分配量只占M23C6中C分配量的约3.3%。C元素的不均匀分配,是CLF-1钢中MX相析出量较低的主要原因之一;在不引入其它强碳化物形成元素的情况下,无法用提高C含量的方式使MX相中C的分配量提高;Cr含量的提高会降低TaC的析出温度,因此其含量不宜超过8.8%;W含量的提高会降低MX析出量,因此不宜超过1.5%;Mn元素对各析出相都没有显著的影响;N含量不宜超过0.02%;在CLF-1钢中添加0.2%Ti可使MX相在650℃的析出量提高9倍,C的分配量提高15倍。实验结果表明:0.2%的Ti元素可使M23C6的数密度降低21.5%,平均尺寸减小20 nm,并使MX相数密度提高4.7倍。这些结果,有力地验证了Ti元素对MX相析出的促进作用。

关键词 材料科学基础学科相图与相变CLF-1钢改良Thermo-Calc计算MX元素分配量    
Abstract

The composition and quantity of the equilibrium precipitated phases in CLF-1 steel were calculated by means of Thermo-calc software. The variation of element distribution in each equilibrium phase with temperature, the influence of main elements on the precipitation amount and temperature of each phase, and the partition of elements among equilibrium phases were investigated. Meanwhile, the size and number density of the precipitated phases were characterized by transmission electron microscopy (TEM). Thermodynamic calculation results show that the partition amount of C in TaC phase only accounts for about 3.3% of that in M23C6. The heterogeneous partition of C is one of the main reasons for the low MX phase precipitation in CLF-1 steel. Without introducing other strong carbide-forming elements, the partition amount of C in MX phase cannot be increased by increasing the C content. The increase of Cr content will reduce the precipitation temperature of TaC, so the Cr content should not exceed 8.8%. The increase of W content will reduce the amount of MX precipitation, so it should not exceed 1.5%. Mn has no significant effect on the amount of every precipitated phase. Finally, N content should not exceed 0.02%. The addition of 0.2%Ti in CLF-1 steel can increase the precipitation amount of MX phase at 650℃ by 9 times, and increase the partition amount of C by 15 times. The experiment result shows that: the addition of 0.2% Ti can reduce the number density of M23C6 by 21.5%, reduce its average size by 20 nm, and increase the number density of MX phase by 4.7 times. These results strongly verified the promoting effect of Ti element on MX phase precipitation.

Key wordsfoundational discipline in materials science    phase transition and phase diagram    improvement of CLF-1 steel    thermo-Calc calculation    MX phase    elemental partitioning fraction
收稿日期: 2022-05-16     
ZTFLH:  TG142  
通讯作者: 熊良银,副研究员,lyxiong@imr.ac.cn,研究方向为核用结构材料及储氢材料
Corresponding author: XIONG Liangyin, Tel: 13840426146, E-mail: lyxiong@imr.ac.cn
作者简介: 杨栋天,男,1998年生,博士生
CLF-1 steelCCrWMnNTaVTiFe
1#0.18.51.50.50.0150.080.240Bal.
2#0.138.381.431.030.00720.0760.240.2Bal.
表1  CLF-1钢的化学成分
图1  CLF-1钢中平衡析出相随温度的变化
图2  CLF-1钢中各析出相的析出温度随合金元素含量的变化
Precipitated phaseElement
TaCTa、C、V、Cr、N、W
VNV、N、Ta、C、Cr、W
M23C6Cr、Fe、W、C、V、Mn
LavesW 、Fe、Cr、Ta 、Mn
表2  CLF-1钢中析出相的主要合金元素
图3  CLF-1钢各析出相中元素的浓度随温度的变化
图4  基体中Fe、Cr和W元素分配量随温度的变化
图5  M23C6中Fe、Cr、W和C元素分配量随温度的变化
图6  MX中C、Ta、N和V元素分配量随温度的变化
图7  基体中C、Ta、N和V元素分配量随温度的变化
图8  C含量对CLF-1钢各相析出量的影响
图9  N含量对CLF-1钢各相析出量的影响
图10  Cr含量对CLF-1钢各相析出量的影响
图11  W含量对CLF-1钢各相析出量的影响
图12  Mn含量对CLF-1钢各相析出量的影响
图13  Ti含量对CLF-1钢各相析出量的影响
图14  Ti元素的添加对CLF-1钢中M23C6和MX相析出量的影响
图15  CNAS钢中M23C6和MX相的析出量随温度的变化
图16  MX中C、Ta、 N、V和Ti元素分配量随温度的变化
图17  1#试样中M23C6的TEM分析
图18  1#试样中MC的TEM分析
图19  2#试样中MC的TEM分析
SteelPrecipitatesDensity /m-3Average diameter / nm
1#M23C64.37×1019131
MX2.6×101958
2#M23C63.43×1019111
MX1.22×102054
表3  1#和2#试样中析出相的数密度和平均粒径
1 Kohyama A, Hishinuma A, Kohno Y, et al. The development of ferritic steels for DEMO blanket [J]. Fusion Eng. Des., 1998, 41: 1
doi: 10.1016/S0920-3796(98)00115-X
2 Zhang Y M, Zeng L P, Shen X Y, et al. ITER project and fusion energy development strategy [J]. Nucl. Fus. Plasma Phys., 2013, 33: 359
2 张一鸣, 曾丽萍, 沈欣媛 等. ITER计划与聚变能发展战略 [J]. 核聚变与等离子体物理, 2013, 33: 359
3 Aubert P, Tavassoli F, Rieth M, et al. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO [J]. J. Nucl. Mater., 2011, 417: 43
doi: 10.1016/j.jnucmat.2010.12.248
4 Liu C X, Mao C L, Cui L, et al. Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels [J]. Acta Metall. Sin., 2021, 57: 1521
doi: 10.11900/0412.1961.2021.00348
4 刘晨曦, 毛春亮, 崔 雷 等. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展 [J]. 金属学报, 2021, 57: 1521
doi: 10.11900/0412.1961.2021.00348
5 Wu Y, Team The FDS. Design analysis of the China dual-functional lithium lead (DFLL) test blanket module in ITER [J]. Fusion Eng. Des., 2007, 82: 1893
doi: 10.1016/j.fusengdes.2007.08.012
6 Tanigawa H, Gaganidze E, Hirose T, et al. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nucl. Fusion, 2017, 57: 092004
7 Mergia K, Boukos N. Structural, thermal, electrical and magnetic properties of Eurofer 97 steel [J]. J. Nucl. Mater., 2008, 373(1-3): 1
doi: 10.1016/j.jnucmat.2007.03.267
8 Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion [J]. J. Nucl. Mater., 1995, 227(1-2): 11
doi: 10.1016/0022-3115(95)00143-3
9 Tavassoli A A F, Rensman J W, Schirra M, et al. Materials design data for reduced activation martensitic steel type F82H [J]. Fusion Eng. Des., 2002, 61-62: 617
doi: 10.1016/S0920-3796(02)00255-7
10 Kohyama A, Kohno Y, Kuroda M, et al. Production of low activation steel; JLF-1, large heats—Current status and future plan [J]. J. Nucl. Mater., 1998, 258-263: 1319
doi: 10.1016/S0022-3115(98)00198-6
11 Laha K, Saroja S, Moitra A, et al. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties [J]. J. Nucl. Mater., 2013, 439: 41
doi: 10.1016/j.jnucmat.2013.03.073
12 Huang Q Y, Li C J, Wu Q S, et al. Progress in development of CLAM steel and fabrication of small TBM in China [J]. J. Nucl. Mater., 2011, 417(1-3): 85
doi: 10.1016/j.jnucmat.2010.12.170
13 Wang P H, Chen J M, Fu H Y, et al. Technical issues for the fabrication of a CN-HCCB-TBM based on RAFM steel CLF-1 [J]. Plasma Sci. Technol., 2013, 15(2): 133
doi: 10.1088/1009-0630/15/2/11
14 Chen J M, Wang P H, Fu H Y, et al. Research of low activation structural material for fusion reactor in SWIP [A]. Proceedings of the 24th IAEA Fusion Energy Conference [C]. San Diego, CA: IAEA, 2012
15 Zhuang G, Li G Q, Li J, et al. Progress of the CFETR design [J]. Nucl. Fusion, 2019, 59: 112010
doi: 10.1088/1741-4326/ab0e27
16 Xu Y P, Lv Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32(17): 2897
16 徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32(17): 2897
17 Liu X Y, Chen Z Z, Zhou Y, et al. Thermodynamic calculation and analysis of equilibrium precipitation phases of G115 martensitic heat-resistant steel [J]. Heat Treat. Met., 2021, 46(11): 29
doi: 10.13251/j.issn.0254-6051.2021.11.005
17 刘心阳, 陈正宗, 周 芸 等. G115马氏体耐热钢平衡析出相的热力学计算和分析 [J]. 金属热处理, 2021, 46(11): 29
doi: 10.13251/j.issn.0254-6051.2021.11.005
18 Sundman B, Matthias S, Zhang L J, et al. Computational thermodynamics and its applications to materials science [J]. Mater. China, 2015, 34(1): 15
18 Sundman B, Matthias S, 张利军 等. 计算热力学及其在材料科学中的应用 [J]. 中国材料进展, 2015, 34(1): 15
19 Kuai C G, Peng Z F. Elemental partitioning characteristics and stability of equilibrium phases during 450~1200℃ in T/P91 steel [J]. Acta Metall. Sin., 2008, 44(8): 897
19 蒯春光, 彭志方. T/P91钢在450-1200℃区间各相元素的分配特征及相稳定性 [J]. 金属学报, 2008, 44(8): 897
20 Peng Z F, Ren Y Y. Determination of ideal partitioning-ratios and-parameters of substitutional elements and lattice cell number of two-phase alloys with FCC, BCC and HCP structures [J]. Acta Metall. Sin., 2001, 37(5): 472
20 彭志方, 任遥遥. FCC, BCC和HCP结构两相合金中置换型元素理想分配比和分配系数及晶胞比的确定 [J]. 金属学报, 2001, 37(5): 472
21 Fu H Y, Wang P H, Chen J M. Heat treatment process for CLF-1 reduced activation ferritic/martensitic steel [J]. Mater. Mech. Eng., 2010, 34(1): 28
21 付海英, 王平怀, 谌继明. CLF-1低活化铁素体/马氏体钢的热处理工艺 [J]. 机械工程材料, 2010, 34(1): 28
22 Tamura M, Kusuyama H, Shinozuka K, et al. Long-term stability of TaC particles during tempering of 8% Cr~2% W steel [J]. J. Nucl. Mater., 2007, 367-370: 137
doi: 10.1016/j.jnucmat.2007.03.154
23 Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
24 Shi L, Yan Z S, Liu Y C, et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment [J]. Mat. Sci. Eng., 2014, 590A: 7
25 Ennis P J, Czyrska-Filemonowicz A. Recent advances in creep-resistant steels for power plant applications [J]. Sadhana, 2003, 28: 709
doi: 10.1007/BF02706455
26 Liu P P, Zhao M Z, Zhu Y M, et al. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel [J]. J. Alloys Compd., 2013, 579: 599
doi: 10.1016/j.jallcom.2013.07.085
27 Vanaja J, Laha K, Nandagopal M, et al. Effect of tungsten on tensile properties and flow behaviour of RAFM steel [J]. J. Nucl. Mater., 2013, 433: 412
doi: 10.1016/j.jnucmat.2012.10.040
28 Abe F, Nakazawa S. The effect of tungsten on creep behavior of tempered martensitic 9Cr steels [J]. Metall. Mater. Trans., 1992, 23A(11) : 3025
29 Yan W, Hu P, Deng L F, et al. Effect of carbon reduction on the toughness of 9CrWVTaN steels [J]. Metall. Mater. Trans., 2012, 43A(6) : 1921
30 Wang H, Yan W, Van Zwaag S, et al. On the 650℃ thermostability of 9~12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
31 Tan L, Snead L L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors [J]. J. Nucl. Mater., 2016, 478: 42
doi: 10.1016/j.jnucmat.2016.05.037
[1] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[12] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[13] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[14] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[15] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.