|
|
基于热力学模拟计算的CLF-1钢改良设计 |
杨栋天1,2, 熊良银1,2( ), 廖洪彬3, 刘实1,2 |
1.中国科学院金属研究所特种合金研究部 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 3.核工业西南物理研究院聚变科学所 成都 610225 |
|
Improved Design of CLF-1 Steel Based on Thermodynamic Simulation |
YANG Dongtian1,2, XIONG Liangyin1,2( ), LIAO Hongbin3, LIU Shi1,2 |
1.Special Alloy Research Department, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Southwestern Institute of Physics, Institute for Fusion Science, Chengdu 610225, China |
引用本文:
杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
Dongtian YANG,
Liangyin XIONG,
Hongbin LIAO,
Shi LIU.
Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. Chinese Journal of Materials Research, 2023, 37(8): 590-602.
1 |
Kohyama A, Hishinuma A, Kohno Y, et al. The development of ferritic steels for DEMO blanket [J]. Fusion Eng. Des., 1998, 41: 1
doi: 10.1016/S0920-3796(98)00115-X
|
2 |
Zhang Y M, Zeng L P, Shen X Y, et al. ITER project and fusion energy development strategy [J]. Nucl. Fus. Plasma Phys., 2013, 33: 359
|
2 |
张一鸣, 曾丽萍, 沈欣媛 等. ITER计划与聚变能发展战略 [J]. 核聚变与等离子体物理, 2013, 33: 359
|
3 |
Aubert P, Tavassoli F, Rieth M, et al. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO [J]. J. Nucl. Mater., 2011, 417: 43
doi: 10.1016/j.jnucmat.2010.12.248
|
4 |
Liu C X, Mao C L, Cui L, et al. Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels [J]. Acta Metall. Sin., 2021, 57: 1521
doi: 10.11900/0412.1961.2021.00348
|
4 |
刘晨曦, 毛春亮, 崔 雷 等. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展 [J]. 金属学报, 2021, 57: 1521
doi: 10.11900/0412.1961.2021.00348
|
5 |
Wu Y, Team The FDS. Design analysis of the China dual-functional lithium lead (DFLL) test blanket module in ITER [J]. Fusion Eng. Des., 2007, 82: 1893
doi: 10.1016/j.fusengdes.2007.08.012
|
6 |
Tanigawa H, Gaganidze E, Hirose T, et al. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nucl. Fusion, 2017, 57: 092004
|
7 |
Mergia K, Boukos N. Structural, thermal, electrical and magnetic properties of Eurofer 97 steel [J]. J. Nucl. Mater., 2008, 373(1-3): 1
doi: 10.1016/j.jnucmat.2007.03.267
|
8 |
Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion [J]. J. Nucl. Mater., 1995, 227(1-2): 11
doi: 10.1016/0022-3115(95)00143-3
|
9 |
Tavassoli A A F, Rensman J W, Schirra M, et al. Materials design data for reduced activation martensitic steel type F82H [J]. Fusion Eng. Des., 2002, 61-62: 617
doi: 10.1016/S0920-3796(02)00255-7
|
10 |
Kohyama A, Kohno Y, Kuroda M, et al. Production of low activation steel; JLF-1, large heats—Current status and future plan [J]. J. Nucl. Mater., 1998, 258-263: 1319
doi: 10.1016/S0022-3115(98)00198-6
|
11 |
Laha K, Saroja S, Moitra A, et al. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties [J]. J. Nucl. Mater., 2013, 439: 41
doi: 10.1016/j.jnucmat.2013.03.073
|
12 |
Huang Q Y, Li C J, Wu Q S, et al. Progress in development of CLAM steel and fabrication of small TBM in China [J]. J. Nucl. Mater., 2011, 417(1-3): 85
doi: 10.1016/j.jnucmat.2010.12.170
|
13 |
Wang P H, Chen J M, Fu H Y, et al. Technical issues for the fabrication of a CN-HCCB-TBM based on RAFM steel CLF-1 [J]. Plasma Sci. Technol., 2013, 15(2): 133
doi: 10.1088/1009-0630/15/2/11
|
14 |
Chen J M, Wang P H, Fu H Y, et al. Research of low activation structural material for fusion reactor in SWIP [A]. Proceedings of the 24th IAEA Fusion Energy Conference [C]. San Diego, CA: IAEA, 2012
|
15 |
Zhuang G, Li G Q, Li J, et al. Progress of the CFETR design [J]. Nucl. Fusion, 2019, 59: 112010
doi: 10.1088/1741-4326/ab0e27
|
16 |
Xu Y P, Lv Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32(17): 2897
|
16 |
徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32(17): 2897
|
17 |
Liu X Y, Chen Z Z, Zhou Y, et al. Thermodynamic calculation and analysis of equilibrium precipitation phases of G115 martensitic heat-resistant steel [J]. Heat Treat. Met., 2021, 46(11): 29
doi: 10.13251/j.issn.0254-6051.2021.11.005
|
17 |
刘心阳, 陈正宗, 周 芸 等. G115马氏体耐热钢平衡析出相的热力学计算和分析 [J]. 金属热处理, 2021, 46(11): 29
doi: 10.13251/j.issn.0254-6051.2021.11.005
|
18 |
Sundman B, Matthias S, Zhang L J, et al. Computational thermodynamics and its applications to materials science [J]. Mater. China, 2015, 34(1): 15
|
18 |
Sundman B, Matthias S, 张利军 等. 计算热力学及其在材料科学中的应用 [J]. 中国材料进展, 2015, 34(1): 15
|
19 |
Kuai C G, Peng Z F. Elemental partitioning characteristics and stability of equilibrium phases during 450~1200℃ in T/P91 steel [J]. Acta Metall. Sin., 2008, 44(8): 897
|
19 |
蒯春光, 彭志方. T/P91钢在450-1200℃区间各相元素的分配特征及相稳定性 [J]. 金属学报, 2008, 44(8): 897
|
20 |
Peng Z F, Ren Y Y. Determination of ideal partitioning-ratios and-parameters of substitutional elements and lattice cell number of two-phase alloys with FCC, BCC and HCP structures [J]. Acta Metall. Sin., 2001, 37(5): 472
|
20 |
彭志方, 任遥遥. FCC, BCC和HCP结构两相合金中置换型元素理想分配比和分配系数及晶胞比的确定 [J]. 金属学报, 2001, 37(5): 472
|
21 |
Fu H Y, Wang P H, Chen J M. Heat treatment process for CLF-1 reduced activation ferritic/martensitic steel [J]. Mater. Mech. Eng., 2010, 34(1): 28
|
21 |
付海英, 王平怀, 谌继明. CLF-1低活化铁素体/马氏体钢的热处理工艺 [J]. 机械工程材料, 2010, 34(1): 28
|
22 |
Tamura M, Kusuyama H, Shinozuka K, et al. Long-term stability of TaC particles during tempering of 8% Cr~2% W steel [J]. J. Nucl. Mater., 2007, 367-370: 137
doi: 10.1016/j.jnucmat.2007.03.154
|
23 |
Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
|
24 |
Shi L, Yan Z S, Liu Y C, et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment [J]. Mat. Sci. Eng., 2014, 590A: 7
|
25 |
Ennis P J, Czyrska-Filemonowicz A. Recent advances in creep-resistant steels for power plant applications [J]. Sadhana, 2003, 28: 709
doi: 10.1007/BF02706455
|
26 |
Liu P P, Zhao M Z, Zhu Y M, et al. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel [J]. J. Alloys Compd., 2013, 579: 599
doi: 10.1016/j.jallcom.2013.07.085
|
27 |
Vanaja J, Laha K, Nandagopal M, et al. Effect of tungsten on tensile properties and flow behaviour of RAFM steel [J]. J. Nucl. Mater., 2013, 433: 412
doi: 10.1016/j.jnucmat.2012.10.040
|
28 |
Abe F, Nakazawa S. The effect of tungsten on creep behavior of tempered martensitic 9Cr steels [J]. Metall. Mater. Trans., 1992, 23A(11) : 3025
|
29 |
Yan W, Hu P, Deng L F, et al. Effect of carbon reduction on the toughness of 9CrWVTaN steels [J]. Metall. Mater. Trans., 2012, 43A(6) : 1921
|
30 |
Wang H, Yan W, Van Zwaag S, et al. On the 650℃ thermostability of 9~12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
|
31 |
Tan L, Snead L L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors [J]. J. Nucl. Mater., 2016, 478: 42
doi: 10.1016/j.jnucmat.2016.05.037
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|