材料研究学报, 2022, 36(8): 628-634 DOI: 10.11901/1005.3093.2021.420

研究论文

力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性

杨琴,1, 王振1, 房春娟2, 王若迪1, 高大航1

1.西安建筑科技大学化学与化工学院 西安 710055

2.西安建筑科技大学理学院 西安 710055

Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties

YANG Qin,1, WANG Zhen1, FANG Chunjuan2, WANG Ruodi1, GAO Dahang1

1.School of Chemistry and Chemical Engineering, Xi' an University of Architecture and Technology, Xi' an 710055, China

2.School of Science, Xi' an University of Architecture and Technology, Xi' an 710055, China

通讯作者: 杨 琴,副教授,1004240879@qq.com,研究方向为功能高分子材料

责任编辑: 黄青

收稿日期: 2021-07-26   修回日期: 2021-12-15  

基金资助: 陕西省自然科学基金(2019JM-541)

Corresponding authors: YANG Qin, Tel: 13572551428, E-mail:1004240879@qq.com

Received: 2021-07-26   Revised: 2021-12-15  

Fund supported: Natural Science Foundation of Shaanxi Province(2019JM-541)

作者简介 About authors

杨 琴,女,1974年生,博士

摘要

以八元瓜环、膨润土为双交联剂制备了力学性能可控的羧甲基纤维素/丙烯酸/八元瓜环/膨润土水凝胶(CMC/AA/CB[8]/BET gel)。采用FT-IR、SEM技术表征其结构和形貌,研究了这种凝胶的力学性能和吸附性能以及溶胀和吸附动力学。结果表明:CB[8]和BET通过氢键与接枝到CMC上的AA形成致密的网络结构,使凝胶的力学性能增强;这种凝胶的溶胀符合准二级动力学模型,并与应力松弛溶胀半结晶聚合物理论相符;这种凝胶在酸中浸泡后酸中的游离H+与CB[8]、BET生成的氢键使凝胶的断裂强度从0.52 MPa显著提高到3.0 MPa;这种凝胶对亚甲基蓝有良好的吸附效果,符合准二级动力学模型。

关键词: 高分子材料; 羧甲基纤维素水凝胶; 力学性能; 动力学; 吸附

Abstract

Hydrogel of (CMC/AA/CB[8]/BET gel) with controllable mechanical properties was prepared with carboxymethyl cellulose and acrylic acid as raw material, while octagon melon ring and bentonite as double crosslinking agent. The structure and morphology of the prepared gel were characterized by FT-IR and SEM. The mechanical properties, adsorption properties, swelling and adsorption kinetics of the gel were investigated. The results show that CB[8] and BET formed a dense network structure through hydrogen bonding with AA grafted to CMC, which enhanced the mechanical properties of the gel;The swelling of the gel conforms to the quasi-second-order kinetic model and the theory of stress relaxation swelling hemicrystalline polymer; After the gel was soaked in acid, the hydrogen bond between the free H+ in the acid and CB[8] and BET significantly increased the breaking strength of the gel from 0.52 MPa to 3.0 MPa; The gel has a good adsorption effect on methylene blue, which accords with the quasi-second-order kinetic model.

Keywords: polymer materials; carboxymethyl cellulose hydrogel; mechanical properties; kinetics; adsorption

PDF (3583KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634 DOI:10.11901/1005.3093.2021.420

YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. Chinese Journal of Materials Research, 2022, 36(8): 628-634 DOI:10.11901/1005.3093.2021.420

纤维素及其衍生物水凝胶具有生物相容性、生物降解性及环境友好性等优点[1~4],广泛应用于生物医学[5]、智能材料[6]、工业[7,8]及环境[9]等领域。但是,纤维素类水凝胶的内部网络结构不稳定,易受破坏而降低其力学性能和成形性[10]。羧甲基纤维素(CMC)分子结构中含有丰富的羟基和羧基,受到极大的关注[11~16]。在CMC水凝胶体系中加入聚丙烯酸[12]、聚丙烯酰胺[13,14]、金属离子[15]、纳米材料[16]等组分,可提高其力学性能。Chen等[17]将CMC与聚丙烯酸(PAA)-Fe3+整合制备一种高强度水凝胶,其断裂强度为4.42 MPa,断裂伸长率为750%。Wang等[18]制备一种氧化石墨烯/Fe3+-CMC/聚乙烯醇水凝胶,其抗压强度达到2.48 MPa并具有快速恢复和抗疲劳的特性。Sinba等[19]将Fe、Al等掺杂到CMC基水凝胶中,使其其力学性能提高,并对金属氧化物有较好的去除效果,最大去除率为84.67%。Bagheri等[20]制备了一种基于CMC和聚苯胺的新型水凝胶,对亚甲基蓝(MB)的去除率达到97.5%。本文以CMC为模板,丙烯酸(AA)为单体,以无毒刚性结构的八元瓜环(CB[8])和具有良好吸附性且价格低廉的膨润土(BET)为双交联剂制备CMC/AA/CB[8]/BET复合水凝胶,研究其结构、力学性能、溶胀性及吸附性,阐明其溶胀及吸附动力学并揭示其对亚甲基蓝的吸附规律。

1 实验方法

1.1 实验用试剂和仪器

羧甲基纤维素(CMC):分析纯;膨润土(BET):分析纯;丙烯酸(AA):分析纯;八元瓜环(CB[8]):提纯三次,实验室自制[21,22];亚甲基蓝(MB):分析纯。

傅里叶漫反射红外光谱仪(FT-IR‐Prestige-21);扫描电镜(SEM)(JSM6510LV);紫外-可见分光光度计(NE-300);万能试验机(WDW-BO5)。

1.2 CMC/AA/CB[8]/BET 凝胶的制备

将0.75 g CMC溶于20 mL去离子水中并加入10 mL的AA和0.10 g的APS,用N2保护反应5 min后放入70℃恒温水浴锅中,4 h后形成凝胶。将凝胶用去离子水冲洗后冷却至室温,在真空干燥箱中干燥后即得CMC/AA凝胶,记为样品a。在前述实验中用N2保护反应5 min后分别加入适量的CB[8]和0.10 g的BET,将其混合均匀后按上述步骤进行即得CMC/AA/CB[8]凝胶,记为样品b。将CMC/AA/BET凝胶记为样品c。同时加入适量的CB[8]和0.10 g的BET混合均匀,按上述步骤进行即得CMC/AA/CB[8]/BET凝胶,记为样品d。

1.3 凝胶的性能表征

将CMC/AA/CB[8]/BET凝胶冷冻干燥后置于液氮中淬冷掰断,得到待测样品。对样品内断面喷金120 s,用SEM观察样品断面的形貌;按1∶200的比例取干燥后的样品和KBr,研磨后压片用于FT-IR测试。

CMC/AA/CB[8]/BE凝胶的溶胀动力学测试:将0.10 g干凝胶浸入200 mL的蒸馏水中使其溶胀。每隔2 h取出凝胶用纱网滤去水后称重,直至溶胀平衡。样品的平衡溶胀量为[23]

Qe=m2-m1m1

式中Qe为平衡溶胀量(mg·g-1),表示每克干凝胶吸收溶液的质量;m1m2为溶胀前后凝胶的质量(g)。用准一级动力学模型[24]

lg(qe-qt)=lgqe-k12.303t

和准二级动力学模型[24]

tqt=1k2qe2+tqe

对实验数据进行拟合,绘制溶胀动力学曲线。 式(2)中k1为准一级动力学方程的吸附速率常数,min-1qe为平衡吸附量,mg·g-1t为吸附时间,min;qtt时刻的吸附量,mg·g-1式(3)中k2为准二级动力学方程的吸附速率常数,g·mg-1·min-1

CMC/AA/CB[8]/BET gel的力学性能测试:将样品裁成尺寸为2.5 mm×2 mm×20 mm的哑铃型样条,用WDW-BO5型万能实验机进行拉伸测试,拉伸速度为100 mm·min-1。则应力和应变为

σ=PA
ε=L-L0L0

式(5)中σ为应力,MPa;ε为应变;P为载荷;A为使用模具切成凝胶的截面积;L为变形后凝胶的长度,mm;L0为原始凝胶的长度,mm;L-L0为伸长量,mm。

根据橡胶的熵弹性理论[25]

σ=VeRT(λ-1λ2)

计算水凝胶样品的有效交联密度。 式(6)中σ为拉伸应力,MPa;λ为拉伸比(ε+1);Ve为有效的交联密度,×10-4 mol·cm-3R为气体常数;T为热力学温度,℃。

测试CMC/AA/CB[8]/BET gel对染料亚甲基蓝吸附性:将0.03 g干凝胶浸入100 mL的20 mg·L-1 MB溶液中,进行吸附直至平衡。用紫外分光光度计在665 nm波长下测定吸附前后MB的吸光度,通过其标准曲线计算吸附前后MB的浓度。水凝胶对MB的吸附量为

Q=(C0-C)Vm

式(7)中Q为水凝胶对MB的吸附量(mg·g-1);C0C分别为吸附前后MB的质量浓度(mg·L-1);V为溶液体积,L;m为干凝胶的质量(g)。

间隔10 min测定不同凝胶样品对MB的吸附量,绘制吸附动力学曲线,用准一级动力学模型 式(2)和准二级动力学模型 式(3)拟合实验数据。用1.0 mol·L-1的HCl和NaOH溶液调节MB溶液的pH值。采用前述方法测定凝胶对具有不同pH值MB溶液的吸附,计算其吸附量。

2 结果和讨论

2.1 CMC/AA/CB[8]/BET凝胶的结构

2.1.1 CMC/AA/CB[8]/BET 凝胶的FT-IR光谱

图1给出了AA和CMC/AA/CB[8]/BET凝胶的红外光谱。图中3444 cm-1附近的宽吸收峰为CMC分子中-OH的伸缩振动峰,2926 cm-1和2934 cm-1处的吸收峰是-CH2-的伸缩振动峰,1641 cm-1处的峰为丙烯酸侧链的羧基上的C=O伸缩振动峰,表明AA单体接枝到了CMC长链上;在1168 cm-1处出现的是膨润土中O-Si-O的伸缩振动峰,可能是BET与AA发生了较强的氢键作用而使Si-O键的强度发生了较大变化,导致O-Si-O的伸缩振动峰向高频区偏移。

图1

图1   AA、CMC/AA/CB[8]/BET凝胶的红外吸收曲线

Fig.1   Infrared absorption curves of AA and CMC/AA/CB[8]/BET gel


2.1.2 水凝胶的SEM分析

图2给出了三种不同组分水凝胶干燥后的SEM照片。图2a表明,CMC/AA凝胶的形貌具有层状结构。图2b表明,CMC/AA/CB[8]凝胶的形貌有许多凹陷,层状结构更加明显。其原因是,AA中的羟基与CB[8]端口的羰基通过氢键发生交联,提高了凝胶的交联密度[26]。与图2b相比,图2c中的凝胶增加了BET组分,BET富含的Si-O键和-OH与AA中的羟基生成大量氢键[27],使凝胶内部更加致密有序,其形貌有明显、有序的三维网络多孔结构。这进一步提高了这种凝胶的抗拉强度,并使其具有良好的吸附性能。结合红外光谱,给出了这种凝胶生成的示意图(图3)。

图2

图2   不同组分水凝胶的扫描电镜照片

Fig.2   SEM morphology of different component hydrogels (a) CMC/AA gel, (b) CMC/AA/CB[8] gel, (c) CMC/AA/CB[8]/BET gel


图3

图3   CMC/AA/CB[8]/BET gel生成的示意图

Fig.3   Formation diagram of CMC/AA/CB[8]/BET gel


2.2 CMC/AA/CB[8]/BET gel的溶胀动力学

CMC/AA/CB[8]/BET gel的溶胀动力学曲线,如图4a所示。可以看出,溶胀初期水分子快速进入凝胶内与其亲水性基团生成稳定的氢键,迅速溶胀;在溶胀中期凝胶继续吸水,但是溶胀速率逐渐降低。其原因是,BET在凝胶内部有区域性的结晶,渐进的膨胀增大了BET晶畴上的应力,使凝胶基体抵抗膨胀而降低了溶胀速率[24];在溶胀后期,水分子继续渗入凝胶网络使凝胶的体积继续膨胀。凝胶中能容纳水分子的空间逐渐减少,使溶胀速率趋于降低直至达到溶胀平衡。图4b中的CMC/AA/CB[8]/BET gel的准一级动力学和准二级动力学拟合曲线表明,这种凝胶的溶胀符合准二级动力学模型,其中BET的层状晶体结构在凝胶中有一定的结晶性,与水中通过应力松弛溶胀半结晶聚合物理论一致[24]

图4

图4   CMC/AA /CB[8]/BET gel的溶胀动力学曲线和溶胀线性拟合曲线

Fig.4   Swelling kinetic curve of CMC/AA/CB[8]/BET gel (a) and Swelling linear fitting curves (b)


2.3 CMC/AA/CB[8]/BET gel的力学性能

2.3.1 不同组分对CMC/AA/CB[8]/BET gel的力学性能的影响

图5给出了四种不同组成复合水凝胶样品的拉伸应力-应变曲线图。从图5可见,样品a的断裂强度为0.18 MPa,断裂伸长率为650%。与样品a相比,样品b的断裂伸长率增大3倍。其原因是,CB[8]与AA之间形成的氢键使凝胶的结构更加致密和力学性能提高。与样品a相比,样品c的断裂强度提高到0.3 MPa,断裂伸长率增大3倍。其原因是,BET与AA间的氢键使凝胶的交联密度提高到14.81×10-4 mol·cm-3,使其力学性能提高[28]。与样品b、c相比,样品d的断裂强度为0.52 MPa,断裂伸长率为1470%,断裂强度增大,断裂伸长率有所降低。其原因是,CB[8]和BET双交联的引入使凝胶体系的拉伸强度明显提高,但是使凝胶网络的交联密度(18.96×10-4 mol·cm-3)过高而导致断裂伸长率降低[29]

图5

图5   不同组分水凝胶的拉伸应力-应变曲线

Fig.5   Tensile stress-strain curves of different component hydrogels


2.3.2 pH值对CMC/AA/CB[8]/BET gel力学性能的影响

CMC/AA/CB[8]/BET凝胶在酸浸泡前后的应力-应变曲线如图6所示。由图6可见,浸泡前其断裂强度为0.52 MPa,断裂伸长率为1470%,浸泡后断裂强度显著提高到3.0 MPa,提高了5.7倍。主要原因是,AA与CB[8]和BET在酸性溶液中生成大量的氢键。这些氢键增强了凝胶内部分子链之间的作用力,使凝胶网络结构更为致密,极大地提高了凝胶的断裂强度。当拉力作用在凝胶上内部的氢键会被应力解离,机械能被耗散,从而延缓水凝胶的断裂[30],但也使其断裂伸长率有所降低[31]。因此,利用酸度调节凝胶中氢键的数量可调控其力学性能。

图6

图6   酸浸泡前后CMC/AA/CB[8]/BET gel的应力-应变曲线

Fig.6   Stress-strain curves of CMC/AA/CB[8]/BET gel before and after acid immersion


2.4 CMC/AA/CB[8]/BET gel对染料亚甲基蓝的吸附性

2.4.1 CMC/AA/CB[8]/BET gel对MB的吸附

图7a给出了CMC/AA/CB[8]/BET凝胶在35℃、pH值为7时对MB吸附量的变化曲线。可以看出,60 min后吸附达到平衡,去除率为98.65%。接枝改性后的材料表面富含-COO-、-CO-及-OH等功能活性基团,使凝胶的吸附位点增加,引入BET又使凝胶具有良好的吸附性能,从而在吸附初期大量MB从溶液中快速扩散到凝胶表面;随着时间的增加MB从凝胶表面扩散至内部,吸附速率降低;当凝胶表面和内部的吸附位点被MB占满[32]时,吸附达到饱和,最大吸附量为67.9 mg·g-1

图7

图7   CMC/AA/CB[8]/BET gel在中性和酸性条件下对MB的去除率和吸附量曲线

Fig.7   Removal rate and adsorption capacity curves of CMC/AA/CB[8]/BET gel for MB under neutral and acidic conditions


图7b给出了CMC/AA/CB[8]/BET凝胶在35℃、pH值为1~7时对MB的吸附曲线。水凝胶对MB的吸附机理主要是静电作用[33,34],pH值的改变使凝胶表面的电荷分布和电荷密度发生变化。溶液的pH值<4时凝胶中的-COO-质子化为-COOH,过多的-COOH不利于凝胶对MB的吸附。同时,溶液中的H+与带正电荷的MB分子在凝胶中的吸附位点有较强的竞争吸附,凝胶与MB之间的静电排斥作用增强减少了对MB的吸附。当pH值>4时水凝胶中的-COOH逐渐离子化为-COO-,带负电荷的凝胶有利于吸附MB分子,使吸附趋于平衡。随着pH值的增大凝胶对MB的吸附量增大和去除率随之提高。在中性条件下,这种凝胶对MB的吸附效果最佳。

2.4.2 CMC/AA/CB[8]/BET gel的吸附动力学

图8给出了CMC/AA/CB[8]/BET凝胶对MB吸附速率和吸附量随时间的变化。从8可见,前30 min内吸附速率较高,吸附量明显增加;60 min后吸附速率保持平衡,吸附量达到饱和。

图8

图8   CMC/AA/CB[8]/BET gel对MB的吸附速率和吸附量曲线

Fig.8   Adsorption rate and adsorption capacity curves of CMC/AA/CB[8]/BET gel for MB


表1给出了吸附动力学相关参数。可以看出,准二级动力学的R2大于准一级动力学的R2,其值为0.9999更接近于1。同时,准二级动力学模型计算的qe值67.4 mg·g-1与实验值基本吻合,表明这种凝胶对MB的吸附行为符合准二级动力学模型。

表1   CMC/AA/CB[8]/BET gel吸附MB染料的动力学参数

Table 1  Kinetic parameters of adsorption of MB dye on CMC/AA/CB[8]/BET gel

Quasi-first-order kinetic equationQuasi-second-order kinetic equation
qexp/mg·g-1k1/min-1 qe/mg·g-1 R2k2/mg·g-1·min-1qe/mg·g-1R2
19.72.867 3.2638 0.97402.008 67.4 0.9999

新窗口打开| 下载CSV


3 结论

以CB[8]和BET为双交联剂可制备一种力学性能可控的CMC/AA/CB[8]/BET凝胶。CB[8]、BET与接枝在CMC上的AA以氢键的作用形成致密、有序的三维网络结构。双交联剂的引入使这种凝胶具有良好的力学性能,酸的强化使其断裂强度提高5.7倍,达到3.0 MPa。这种凝胶的溶胀符合准二级动力学模型,与应力松弛溶胀半结晶聚合物理论一致。在温度为35℃、pH值为5~7的条件下对MB的去除率可达99%,最大吸附量为67.23 mg·g-1

参考文献

Sinha V, Chakma S.

Advances in the preparation of hydrogel for wastewater treatment: a concise review

[J]. J. Environ. Chem. Eng., 2019, 7(5): 103295

DOI      URL     [本文引用: 1]

Basta A H, El-Saied H, Hasanin M S, et al.

Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications

[J]. Int. J. Biol. Macromol., 2018, 107(Pt.A): 1364

Ahmad M, Manzoor K, Ahmad S, et al.

Preparation, kinetics, thermodynamics and mechanism evaluation of thiosemicarbazide modified green carboxymethyl cellulose as an efficient Cu (II) adsorbent

[J]. J. Chem. Eng. Data., 2018, 63(6): 1905

DOI      URL    

Ahmed, Salama, Nadia, et al.

Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal

[J]. Int. J. Biol. Macromol., 2015, 73(1): 72

DOI      URL     [本文引用: 1]

Vk A, Kv B, Tj C, et al.

Carboxymethyl cellulose-based materials for infection control and wound healing: a review

[J]. Int. J. Biol. Macromol., 2020, 164: 963

DOI      URL     [本文引用: 1]

Lai C, Tu M, Xia C, et al.

Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass

[J]. Energy Fuels., 2017, 31(11): 12317

DOI      URL     [本文引用: 1]

Ab A, Esb C, Mtc D, et al.

Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity

[J]. Int. J. Biol. Macromol., 2020, 163: 2465

DOI      URL     [本文引用: 1]

Suriyatem R, Noikang N, Kankam T, et al.

Physical properties of carboxymethyl cellulose from palm bunch and bagasse agricultural wastes: effect of delignification with hydrogen peroxide

[J]. Polymers, 2020, 12(7): 1505

DOI      URL     [本文引用: 1]

Yaradoddi J S, Banapurmath N R, Ganachari S V, et al.

Biodegradable carboxymethyl cellulose based material for sustainable packaging application

[J]. Sci. Rep., 2020, 10(1): 21960

DOI      URL     [本文引用: 1]

Peng N, Hu D, Zeng J, et al.

Superabsorbent cellulose-clay nanocomposite hydrogels for high efficient removal of dye in water

[J]. ACS Sustain. Chem. Eng., 2016, 4(12): 7217

DOI      URL     [本文引用: 1]

Zainal S H, Mohd N, Suhaili N, et al.

Preparation of cellulose-based hydrogel: a review

[J]. J. Mater. Sci. Technol., 2020, 10: 935

[本文引用: 1]

Tang Z W, Zhao M C, Wang Y, et al.

Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination

[J]. Int. J. Biol. Macromol., 2020, 144: 127

DOI      URL     [本文引用: 1]

Lin F, Lu X, Wang Z, et al.

In situ polymerization approach to cellulose-polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties

[J]. Cellulose, 2019, 26(3): 1825

DOI      URL     [本文引用: 1]

Jeong D, Kim C, Kim Y, et al.

Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties

[J]. Eur. Polym. J., 2020, 127: 109586

DOI      URL     [本文引用: 1]

Li N, Chen G X, Chen W, et al.

Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength

[J]. Carbohydr. Polym., 2017, 178: 159

DOI      URL     [本文引用: 1]

Jafarigol E, Salehi M B, Mortaheb H R.

Preparation and assessment of electro-conductive poly (acrylamide-co-acrylic acid) carboxymethyl cellulose/reduced graphene oxide hydrogel with high viscoelasticity

[J]. Chem. Eng. Res. Des., 2020, 162: 74

DOI      URL     [本文引用: 2]

Chen, W, Bu Y, Li D, et al.

High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose

[J]. Cellulose, 2020, 27: 853

DOI      [本文引用: 1]

Hydrogels are the focus of extensive research due to their potential applications in various fields including tissue engineering, drug delivery, soft actuators, and sensors, etc. However, insufficient functionality and weak mechanical properties limit their practical applications. Herein, we developed a simple approach to fabricate strong, tough and self-healable hydrogels by introducing sodium carboxymethyl cellulose (CMC) into poly (acrylic acid) (PAA)-Fe3+ hydrogels as well as by simply soaking the gels in sodium chloride (NaCl) solution. During the deformation process, the synergetic interactions of -COO-/Fe3+ physically ionic networks as well as PAA covalent networks can homogeneously distribute stress, and more importantly, high degree of network densities, and chain entanglements introduced by soaking treatment could act as "sacrificial bonds" to dissipate energy effectively. As a result, the resulting optimal PAA/CMC1.0-Fe3+-S samples with water content of approximately 37.7 wt% possessed remarkable mechanical properties, with elastic modulus of 0.41 MPa, fracture tensile stress of 4.42 MPa, superior to that of PAA-Fe3+ and PAA/CMC1.0-Fe3+ hydrogels. Additionally, the noncovalent ionic interactions of PAA/CMC1.0-Fe3+ hydrogels serve as dynamic but stable associations, leading to effective self-healing efficiency (over 85%) after damage, with recovered fracture stress of 3.75 MPa as well as an elongation at break of about 750%. We expect this facile strategy may enrich the avenue in exploration of high-strength, tough and self-healing cellulosic hydrogels. [GRAPHICS].

Wang J H, Xue Y N, Wang Y Q, et al.

High-strength and tough composite hydrogels reinforced by the synergistic effect of nano-doping and triple-network structures

[J]. Eur. Polym. J., 2020, 142: 110122

DOI      URL     [本文引用: 1]

Sinba V, Chakma S.

Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution

[J]. Environ. Sci. Technol., 2020, 17: 100620

[本文引用: 1]

Bagheri N, Lakouraj M M, Hasantabar V, et al.

Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water

[J]. J. Hazard. Mater., 2020, 403: 123631

DOI      URL     [本文引用: 1]

Bi Q, Hu Y P, Yang Q, et al.

A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid

[J]. Chin. J. Org. Chem., 2007, 27(7): 880

[本文引用: 1]

毕 强, 胡英鹏, 杨 琴 .

水-盐酸两步分离瓜环混合物

[J]. 有机化学, 2007, 27(7): 880

[本文引用: 1]

Yang Q, Li X L, Jiang Y, et al.

Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils

[J]. Mater. Res. Innovations., 2014, 18(4): 280

DOI      URL     [本文引用: 1]

Pekcan Ö.

In situ fluorescence experiments to study swelling and slow release kinetics of disc-shaped poly (methyl methacrylate) gels made at various crosslinker densities

[J]. Polymer, 1998, 39(22): 5351

DOI      URL     [本文引用: 1]

Schott H.

Kinetics of swelling of polymers and their gels

[J]. Journal of Pharmaceutical Science, 1992, 81(5)

[本文引用: 4]

Xiang Y, Peng Z, Chen D.

A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties

[J]. Eur. Polym. J., 2006, 42(9): 2125

DOI      URL     [本文引用: 1]

Yang Q, Fang C J, Zhao N, et al.

Self-healing and swelling kinetics of a new polyacrylic acid hydrogels

[J]. Chinese Journal of Materials Research, 2018, 32(8): 625

[本文引用: 1]

杨 琴, 房春娟, 赵 娜 .

新型聚丙烯酸水凝胶的自愈及其溶胀动力学

[J]. 材料研究学报, 2018, 32(8): 625

[本文引用: 1]

Liu Y L, Su Y P, Yin Y, et al.

Research progress of bentonite modified cementitious materials

[J]. Materials Reports, 2021, 35(5): 5040

[本文引用: 1]

刘益良, 苏幼坡, 殷 尧 .

膨润土改性胶凝材料的研究进展

[J]. 材料导报, 2021, 35(5): 5040

[本文引用: 1]

Chaudhuri S D, Mandal A, Dey A, et al.

Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel

[J]. Appl Clay Sci., 2020, 185: 105405

DOI      URL     [本文引用: 1]

Liu C Y, Gao X P, Liu J, et al.

Preparation and properties of sodium alginate/polyacrylamide/graphene oxide nanocomposite hydrogels

[J]. Chinese Journal of Materials Research, 2015, 29(7): 517

[本文引用: 1]

刘翠云, 高喜平, 刘 捷 .

SA/PAM/GO纳米复合水凝胶的制备和性能

[J]. 材料研究学报, 2015, 29(7): 517

[本文引用: 1]

Zhang X Y, Zhao C Z, Xiang N P, et al.

Chain entanglements and hydrogen bonds in carbopol microgel reinforced hydrogel

[J]. Macromol Chem Phys, 2016, 217(19): 2139

DOI      URL     [本文引用: 1]

Xiao J, Cui Y D, Fan H Q, et al.

Preparation and action principle of pH-sensitive hydrogels

[J]. Henan Chemical Industry, 2003, (08): 5

[本文引用: 1]

肖 君, 崔英德, 范会强 .

pH敏感性水凝胶的制备与作用原理

[J]. 河南化工, 2003, (08): 5

[本文引用: 1]

Liu X, Ma R, Wang X, et al.

Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review

[J]. Environ. Pollut., 2019, 252: 62

DOI      URL     [本文引用: 1]

Fazli W, Zhong C, Wang H S, et al.

Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles

[J]. Polymers, 2017, 9(12): 636

DOI      URL     [本文引用: 1]

Shen X P, Shamshina J L, Berton P, et al.

Hydrogels based on cellulose and chitin: fabrication, properties, and applications

[J]. Green Chem., 2016, 18(1): 53

DOI      URL     [本文引用: 1]

/