Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 401-408    DOI: 10.11901/1005.3093.2021.174
  研究论文 本期目录 | 过刊浏览 |
添加Nb元素对TiZr基非晶复合材料性能的影响
张益铭, 赵子彦, 牟娟()
材料各向异性与织构教育部重点实验室 东北大学材料科学与工程学院 沈阳 110004
Effect of Nb Addition on Properties of TiZr-based Amorphous Alloys
ZHANG Yiming, ZHAO Ziyan, MU Juan()
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Sciences and Engineering, Northeastern University, Shenyang 110004, China
引用本文:

张益铭, 赵子彦, 牟娟. 添加Nb元素对TiZr基非晶复合材料性能的影响[J]. 材料研究学报, 2022, 36(6): 401-408.
Yiming ZHANG, Ziyan ZHAO, Juan MU. Effect of Nb Addition on Properties of TiZr-based Amorphous Alloys[J]. Chinese Journal of Materials Research, 2022, 36(6): 401-408.

全文: PDF(4251 KB)   HTML
摘要: 

使用铜模铸造法制备(Ti45.7Zr33Ni3Cu5.8Be12.5)(1-0.01x)Nb x (x=0、2、4、6、8和10,记为Nb0、Nb2、Nb4、Nb6、Nb8和Nb10)的TiZr基非晶合金复合材料,研究了添加Nb元素对TiZr基非晶复合材料性能的影响。结果表明,Nb元素含量的提高使材料中β相的晶粒尺寸更大、体积分数提高和形变诱发马氏体相变受到抑制。Nb元素的添加,使这种非晶复合材料的塑性大大提高,而屈服强度降低。值得注意的是,Nb元素的添加还提高了非晶复合材料力学性能的可重复性。在Nb0~Nb4等具有形变诱发相变的非晶复合材料生成的小板条α''马氏体,能诱导多重剪切带的生成。在Nb6~Nb10这种未发生形变诱发相变行为的非晶复合材料中,大量位错在β相中产生并在界面处积累形成位错台阶,从而引发多重剪切带的形成,最终使非晶复合材料的塑性提高。

关键词 复合材料力学性能微观结构表征形变诱发相变行为Nb元素添加    
Abstract

TiZr-based amorphous alloys with different Nb amount, given by (Ti45.7Zr33Ni3Cu5.8Be12.5)(1-0.01x)Nb x (x=0, 2, 4, 6, 8, and 10, denoted as Nb0, Nb2, Nb4, Nb6, Nb8, and Nb10) were prepared via copper mold casting method. Then the effect of Nb addition on the performance of the alloys was investigated by means of uniaxial compression testing, XRD, TEM and SEM+EDS. The results show that with the increasing Nb content the grain size and volume fraction of the β-phase increased, but the deformation-induced martensitic transformation was suppressed; The plasticity of the amorphous alloys was greatly improved, while the yield strength gradually decreased. Notably, the repeatability of the mechanical properties of the amorphous alloys was improved with the addition of Nb. For the amorphous alloys that may undergo deformation-induced phase transformation, such as Nb0~Nb4, homogenous α'' martensite with a small lath can effectively induce the formation of multiple shear bands. For the amorphous alloys that cannot undergo deformation-induced phase transformation, such as Nb6~Nb10, many dislocations may occur in the β-phase and they accumulated at boundaries to form dislocation steps, which would trigger the formation of multiple shear bands and finally improve the plasticity of amorphous alloys.

Key wordscomposite    mechanical properties    microstructure characterization    deformation-induced phase transformation    Nb addition
收稿日期: 2021-03-09     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金(51771049);国家自然科学基金(51790484);冲击环境材料技术重点实验室基金(JCKYS2020602005)
作者简介: 张益铭,男,1994年生,硕士生
图1  铸态TiZr基非晶复合材料的XRD谱(插图为(100) β 峰的放大示意图)和非晶复合材料中枝晶相的晶格常数
图2  铸态TiZr基非晶复合材料样品的SEM照片
AlloysNb0Nb2Nb4Nb6Nb8Nb10
Volume fraction/%495455626365
Grain size/μm273536374041
表1  Nb0~Nb10样品中枝晶相的体积分数和晶粒尺寸
图3  非晶复合材料中的枝晶相和非晶基体各种元素的含量与成分的关系和Nb10样品的能谱面扫图片
图4  TiZr基非晶复合材料的力学性能变化
AlloysAverageStandard deviationCV/%
σ0.2/MPaσb/MPaεp/%σ0.2/MPaσb/MPaεp/%σ0.2σbεp
Nb01486.661967.764.3434.3048.670.292.312.476.60
Nb21429.521864.947.7917.1529.550.211.201.582.73
Nb41347.711751.568.8617.8244.120.961.322.5210.87
Nb61277.941860.9615.196.9826.370.720.551.424.73
Nb81222.102153.9026.6211.3320.530.550.930.952.01
Nb101266.862315.3628.8017.1743.030.591.361.862.04
表2  非晶复合材料力学性能的可重复性
图5  断裂后TiZr基非晶复合材料的XRD谱
图6  Nb2和Nb6样品断裂后的明场透射电镜照片和相应的SAED图样
图7  TiZr基非晶复合材料压缩变形后其侧面多重剪切带的SEM照片
1 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
doi: 10.1016/S1359-6454(99)00300-6
2 Ma X Z, Ma D Q, Xu H, et al. Enhancing the compressive and tensile properties of Ti-based glassy matrix composites with Nb addition [J]. J. Non-Cryst. Solids, 2017, 463: 56
doi: 10.1016/j.jnoncrysol.2017.02.025
3 Zhong H, Chen J, Dai L Y, et al. Effect of counterpart material on the tribological properties of Zr-based bulk metallic glass under relatively heavy loads [J]. Wear, 2016, 346-347: 22
doi: 10.1016/j.wear.2015.10.018
4 Li Y H, Zhang W, Dong C, et al. Effects of cryogenic temperatures on mechanical behavior of a Zr60Ni25Al15 bulk metallic glass [J]. Mater. Sci. Eng., 2013, 584A: 7
5 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
pmid: 15378050
6 Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength [J]. Appl. Phys. Lett., 2003, 83: 2793
doi: 10.1063/1.1616192
7 Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass [J]. Acta Mater., 2003, 51: 1167
doi: 10.1016/S1359-6454(02)00521-9
8 Wu F F, Zhang Z F, Mao S X, et al. Effect of annealing on the mechanical properties and fracture mechanisms of a Zr56.2Ti13.8Nb5.0Cu6.9-Ni5.6Be12.5 bulk-metallic-glass composite [J]. Phys. Rev., 2007, 75B: 134201
9 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
doi: 10.1038/nature06598
10 Hays C C, Kim C P, Johnson W L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions [J]. Phys. Rev. Lett., 2000, 84: 2901
pmid: 11018971
11 Hofmann D C, Suh J Y, Wiest A, et al. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136
doi: 10.1073/pnas.0809000106
12 He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity [J]. Nat. Mater., 2003, 2: 33
doi: 10.1038/nmat792
13 Fan C, Li H Q, Kecskes L J, et al. Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures [J]. Phys. Rev. Lett., 2006, 96: 145506
doi: 10.1103/PhysRevLett.96.145506
14 Chen G, Bei H, Cao Y, et al. Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases [J]. Appl. Phys. Lett., 2009, 95: 081908
15 Qiao J W, Jia H L, Liaw P K. Metallic glass matrix composites [J]. Mater. Sci. Eng., 2016, 100R: 1
16 Hofmann D C. Shape memory bulk metallic glass composites [J]. Science, 2010, 329: 1294
doi: 10.1126/science.1193522
17 Wu Y, Xiao Y H, Chen G L, et al. Bulk metallic glass composites with transformation-mediated work-hardening and ductility [J]. Adv. Mater., 2010, 22: 2770
doi: 10.1002/adma.201000482
18 Wu Y, Ma D, Li Q K, et al. Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction [J]. Acta Mater., 2017, 124: 478
doi: 10.1016/j.actamat.2016.11.029
19 Oh Y S, Kim C P, Lee S, et al. Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites [J]. Acta Mater., 2011, 59: 7277
doi: 10.1016/j.actamat.2011.08.006
20 Mu J, Zhu Z W, Su R, et al. In situ high-energy X-ray diffraction studies of deformation-induced phase transformation in Ti-based amorphous alloy composites containing ductile dendrites [J]. Acta Mater., 2013, 61: 5008
doi: 10.1016/j.actamat.2013.04.045
21 Szuecs F, Kim C P, Johnson W L. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite [J]. Acta Mater., 2001, 49: 1507.
doi: 10.1016/S1359-6454(01)00068-4
22 Chu M Y, Jiao Z M, Wu R F, et al. Quasi-static and dynamic deformation behaviors of an in-situ Ti-based metallic glass matrix composite [J]. J. Alloys Compd., 2015, 640: 305
doi: 10.1016/j.jallcom.2015.03.253
23 Ma D Q, Jiao W T, Zhang Y F, et al. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites [J]. J. Alloys Compd., 2015, 624: 9
doi: 10.1016/j.jallcom.2014.11.099
24 Liu D M, Zhu Z W, Li Z K, et al. Modulating work-hardening behaviors and tensile plasticity of in-situ formed ductile dendrite Ti-based bulk metallic glass composites with tailored dendrite composition [J]. Scr. Mater., 2018, 146: 22
doi: 10.1016/j.scriptamat.2017.11.001
25 Xia S H, Wang J T. A micromechanical model of toughening behavior in the dual-phase composite [J]. Int. J. Plast., 2010, 26: 1442
doi: 10.1016/j.ijplas.2010.01.005
26 Sha P F, Zhu Z W, Fu H M, et al. Effects of casting temperature on the microstructure and mechanical properties of the TiZr-based bulk metallic glass matrix composite [J]. Mater. Sci. Eng., 2014, 589A: 182
27 Zhang T, Ye H Y, Shi J Y, et al. Dendrite size dependence of tensile plasticity of in situ Ti-based metallic glass matrix composites [J]. J. Alloys Compd., 2014, 583: 593
doi: 10.1016/j.jallcom.2013.08.201
28 Yang J M, Zhao Z Y, Mu J, et al. Effect of pre-plastic-deformation on mechanical properties of TiZr-based amorphous alloy composites [J]. Mater. Sci. Eng., 2018, 716A: 23
29 Qiao J W, Zhang J T, Jiang F, et al. Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures [J]. Mater. Sci. Eng., 2010, 527A: 7752
30 Qiao J W, Wang S, Zhang Y, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification [J]. Appl. Phys. Lett., 2009, 94: 151905
doi: 10.1063/1.3118587
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.