Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 416-424    DOI: 10.11901/1005.3093.2021.248
  研究论文 本期目录 | 过刊浏览 |
氧化石墨烯/苯甲酸钠复合成核剂协同改性PA6纳米复合材料的性能
黄欢1, 张迅韬1, 杨尚科1, 肖刘鑫1, 张兆鑫1, 严磊1, 蔺海兰1, 卞军1(), 陈代强2
1.西华大学材料科学与工程学院 成都 610039
2.四川大学高分子科学与工程学院 成都 610065
Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent
HUANG Huan1, ZHANG Xuntao1, YANG Shangke1, XIAO Liuxin1, ZHANG Zhaoxin1, YAN Lei1, LIN Hailan1, BIAN Jun1(), CHEN Daiqiang2
1.College of Materials Science and Engineering, Xi-Hua University, Chengdu, Sichuan 610039, China
2.College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, Chin
引用本文:

黄欢, 张迅韬, 杨尚科, 肖刘鑫, 张兆鑫, 严磊, 蔺海兰, 卞军, 陈代强. 氧化石墨烯/苯甲酸钠复合成核剂协同改性PA6纳米复合材料的性能[J]. 材料研究学报, 2022, 36(6): 416-424.
Huan HUANG, Xuntao ZHANG, Shangke YANG, Liuxin XIAO, Zhaoxin ZHANG, Lei YAN, Hailan LIN, Jun BIAN, Daiqiang CHEN. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. Chinese Journal of Materials Research, 2022, 36(6): 416-424.

全文: PDF(7361 KB)   HTML
摘要: 

先用水热法合成氧化石墨烯(GO)/苯甲酸钠(Sb)复合成核剂(GO-Sb),然后用熔融共混法制备尼龙6(PA6)/GO-Sb纳米复合材料,研究了分别添加GO和Sb、同时添加GO-Sb对PA6纳米复合材料的形态、力学和热性能的影响。结果表明:GO与Sb之间存在静电相互作用和π-π共轭,Sb的加入能促进PA6中γ晶的形成。GO-Sb作为异相成核剂均匀分散在PA6中, 使PA6纳米复合材料的结晶温度、结晶度和热变形温度提高。PA6-GO-Sb(100/0.05/0.25)纳米复合材料的拉伸强度和冲击强度分别比纯PA6提高了69.9%和157.1%。PA6-GO-Sb(100/0.05/0.25)纳米复合材料的拉伸强度、冲击强度和弹性模量分别比PA6-GO-Sb(100/0.3/0)纳米复合材料提高了13.6%、186.4%和52.6%。与纯PA6(k=0.238 W/m·k)相比,PA6-GO-Sb(100/0.3/0)纳米复合材料(k=0.536 W/m·k)的热导率提高了125.2%,PA6-GO-Sb(100/0.05/0.25)纳米复合材料(k=0.854 W/m·k)的热导率提高了258.8%。

关键词 复合材料尼龙6(PA6)氧化石墨烯(GO)苯甲酸钠(Sb)力学性能热导率    
Abstract

Firstly, a complex nucleating agent (GO-SB) was synthesized by hydrothermal method with graphene oxide (GO) and sodium benzoate (SB) as raw material, and then nanocomposites of nylon 6 (PA6) /GO-SB were prepared by melt blending method with PA6 as matrix and GO-SB as complex nucleating agent. The effect of the introducing GO and SB separately, and GO-SB simultaneously on the morphology, mechanical and thermal-property of PA6 based nanocomposites were investigated. The results show that there are electrostatic interaction and π-π conjugation between GO and SB, and the addition of SB can promote the formation of γ-crystals in PA6. GO-SB was uniformly dispersed in PA6 matrix as heterogeneous nucleating agent, which could induce the increase of crystallization temperature, crystallinity, and thermal deformation temperature of PA6 based nanocomposites. The tensile strength and impact strength of PA6/GO-SB (100/0.05/0.25 in mass fraction) nanocomposites are 69.9%, and 157.1% higher than those of pure PA6, respectively. The tensile strength, impact strength and elastic modulus of PA6/GO-SB (100/0.05/0.25) nanocomposites were increased by 13.6%, 186.4% and 52.6%, respectively, compared with those of PA6/GO-SB (100/0.3/0) nanocomposites. Compared with k=0.238 W/m·k of the pure PA6, the thermal conductivity k=0.536 W/m·k of PA6/GO-SB (100/0.3/0) nanocomposite is increased by 125.2%; while the thermal conductivity k=0.854 W/m·k of PA6/GO-SB (100/0.05/0.25) nanocomposites is increased by 258.8%.

Key wordscomposite    Nylon 6 (PA6)    graphene oxide (GO)    sodium benzoate (Sb)    mechanical property    thermal conductivity
收稿日期: 2021-04-16     
ZTFLH:  TQ332  
基金资助:国家教育部春晖计划合作项目(Z2018088);国家教育部春晖计划合作项目(Z2017070);研究生创新研究基金项目(SA2000002910);西华大学界面创新研究工作室项目(2019-07);国家级大学生创新创业训练计划项目(202110623XXX);四川省级一流专业建设(RC2100001411);四川省级一流课程建设项目(RC2100001374);西华大学思政课程建设项目(RC2100001459)
作者简介: 黄欢,女,1995年生,硕士
SamplesTco/℃Tcp/℃Tce/℃Tmo/℃Tmp/℃Tme/℃ΔHm/J·g-1Xc/%ΔT/℃
P-G-Sb(100/0/0)155.5164.7177.2209.4223.3229.550.9122.1358.6
P-G-Sb(100/0.3/0)178.5185.6189.9210.2218.6230.653.9123.5133.0
P-G-Sb(100/0.25/0.05)177.8184.6188.9207.5221.4227.765.3928.5236.8
P-G-Sb(100/0.15/0.15)177.0184.3188.8207.2221.3228.057.6725.1537.0
P-G-Sb(100/0.05/0.25)178.5184.8189.2207.5220.8226.552.3722.8436.0
表1  PA6/GO-Sb纳米复合材料的DSC熔融-结晶参数
图1  GO-Sb复合成核剂的制备及其反应原理
图2  材料的设计示意图
图3  填料和PA6/GO-S纳米复合材料的红外光谱
图4  PA6/GO-Sb纳米复合材料的XRD谱
图5  纳米复合材料样品断面的FESEM照片
图6  PA6/GO-Sb纳米复合材料的DSC曲线
Samples

P-G-Sb

(100/0/0)

P-G-Sb

(100/0.3/0)

P-G-Sb

(100/0.25/0.05)

P-G-Sb

(100/0.2/0.1)

P-G-Sb

(100/0.15/0.15)

P-G-Sb

(100/0.1/0.2)

P-G-Sb

(100/0.05/0.25)

VST/℃204.6211.3209.0208.6208.5208.0208.3
表2  PA6/GO-Sb纳米复合材料的维卡软化温度
图7  纯PA6和PA6/GO-Sb 纳米复合材料的力学性能
图8  纯PA6和PA6/GO-Sb纳米复合材料的热导率
1 O'Neill A, Bakirtzis D, Dixon D. Polyamide 6/graphene composites: the effect of in situ polymerization on the structure and properties of graphene oxide and reduced graphene oxide [J]. European Polymer Journal, 2014, 59(1): 353
doi: 10.1016/j.eurpolymj.2014.07.038
2 Pant H R, Pant B, Park C H, et al. RGO/Nylon-6 composite mat with unique structural features and electrical properties obtained from electrospinning and hrdrothermal process [J]. Fibers and Polymers, 2013, 14(6): 970
doi: 10.1007/s12221-013-0970-1
3 Binsbergen F L, Delange B G M. Heterogeneous nucleation in the crystallization of Polyolefin's: Part 2. Kineties of crystallization of nucleated Polypropylene [J]. Polymer, 1970, 11(4): 309
doi: 10.1016/0032-3861(70)90071-6
4 Beck H N, Ledbetter H D. DTA study of heterogeneous nucleation of crystallization in Polypropylene [J]. Journal of Applied Polymer Science, 1965, 9(6): 2131
doi: 10.1002/app.1965.070090610
5 Beek H N. Heterogeneous nucleating agents for Polypropylene crystallization [J]. Journal of Applied Polymer Science, 1967, 11(5): 673
doi: 10.1002/app.1967.070110505
6 Lu L Y, Zhu C S, H S Q. Research progress on the effect of nucleating agent on the structure and properties of nylon [J]. Application of Engineering Plastics, 2003, 31(5): 69
6 吕励耘, 朱诚身, 何素芹. 成核剂对尼龙结构与性能影响的研究进展 [J]. 工程塑料应用, 2003(05): 69
7 Lai D W, Li D X, Yang J, et al. Preparation and characterization of hyperbranched polyamide 6 modified by organic montmorillonite [J]. Journal of Composite Materials, 2016, 33 (8): 1663
8 Huang Z G, Zou X Y, Fang L C. Study on non isothermal crystallization behavior of nylon 6/kaolin composite [J]. Modern Plastic Processing and Application, 2010, 22(5): 40
8 黄兆阁, 邹晓燕, 方立翠. 尼龙6/高岭土复合材料的非等温结晶行为研究 [J]. 现代塑料加工应用, 2010, 22(05): 40
9 Chen X D, Chen G W. Effect of components on PA6/PP/Talcum Powder ternary composite [J]. Application of Engineering Plastics, 2018, 46(5): 33
9 陈晓东, 陈光伟. 组分对PA6/PP/滑石粉三元复合材料的影响 [J]. 工程塑料应用, 2018, 46(05): 33
10 Xu Q J, Wang S B, Chen F F, et al. Studies on the interfacial effect between nano-SiO2 and nylon 6 in nylon 6/SiO2 nanocomposites [J]. Nanomaterials and Nanotechnology, 2016, 6(1): 1
doi: 10.5772/62161
11 Dural Erem A, Ozcan G, Skrifvars M. Antibacterial activity of PA6/ZnO nanocomposite fibers [J]. Textile Research Journal, 2011, 81(16): 1638
doi: 10.1177/0040517511407380
12 Wu X F, Zhao Y K, Li X J, et al. Isothermal Crystallization Properties of Polyamide 6/Hexagonal Boron Nitride Nanocomposites [J]. Journal of Macromolecular Science Part B, 2018: 1
13 Zhang X X, Yu S C, Liu H H, et al. Preparation and characterization of conductive MWCNTs/PA6 composites [J]. Journal of Tianjin University of Technology, 2017, 036(003): 11
13 张兴祥, 于思聪, 刘海辉, 等. 导电性MWCNTs/PA6复合材料制备与性能表征 [J]. 天津工业大学学报, 2017, 36(03): 11
14 Hu X Y, Zheng Q, Gu T, et al. The effect of Ca3(Si3O9) content on the structure and properties of nylon 6 [J]. Polymer Materials Science and Engineering, 2017(2): 44
14 胡孝迎, 郑强, 辜婷, 等. Ca3(Si3O9)的含量对尼龙6结构与性能的影响 [J]. 高分子材料科学与工程, 2017, 33(02): 44
15 Song X Y, Wu S Z, Lu J R, et al. Study on the properties of polycarbonate/nylon 1010 solvent resistant alloy system [J]. Plastics Industry, 2009(07): 12
15 宋湘怡, 吴水珠, 卢家荣, 等. 聚碳酸酯/尼龙1010耐溶剂合金体系的性能研究 [J]. 塑料工业, 2009, 37(07): 12
16 Yao H M, Lin Z Y, Xiao F Y, et al. Preparation and characterization of PPEs/MC nylon 6 in situ composite [J]. Plastics Industry, 2009, (01): 13
16 姚辉梅, 林志勇, 肖凤英, 等. PPES/MC尼龙6原位复合材料的制备与表征 [J]. 塑料工业, 2009, 37(01): 13
17 Kobayashi D G, Hsieh Y T, Takahara A. Interphase structure of carbon fiber reinforced polyamide 6 revealed by microbeam X-ray diffraction with synchrotron radiation [J]. Polymer, 2016, 89: 54
18 Chen J, Hu J H, Zhang Y, et al. Synergistic Reinforcing Effects of PA6 Composites Filled with Talc and Glass Fiber [J]. Guangdong Chemical, 2018, 45(9): 33
18 陈 俊, 胡建华, 张译方 等. 滑石粉-玻纤协同增强尼龙复合材料 [J]. 广东化工, 2018, 45(09): 33
19 Zheng T, Xia W N, Guo J, et al. Preparation of flame-retardant polyamide 6 by incorporating MgO combined with g-C3N4 [J]. Polymers for Advanced Technologies, 2020, 31: 1963
doi: 10.1002/pat.4920
20 Kodal M, Erturk S, Sanli S, et al. Properties of talc/wollastonite/polyamide 6 hybrid composites [J]. Polymer Composites, 2015, 36(4): 739
doi: 10.1002/pc.22993
21 Zhang L, Yang J, Feng C, et al. Structure And Performance of Polyamide 6 Composites Reinforced By Glass Fiber Compounded With Nano-SiO2 or Carbon Nanotubes [J]. Acta Polymerica Sinica, 2010, (11): 1333
21 张 玲, 杨建民, 冯超伟. 表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6的结构与性能 [J]. 高分子学报, 2010, (11): 1333
22 Guo M, Liu Y Q, Li J Q. Mechanical and crystallization properties of polyamide 6 modified with composite nucleating agents [J]. Synthetic Resin and Plastics, 2014, 31(01): 1
22 郭 敏, 刘轶群, 李晋庆 等. 复合成核剂改性PA 6的力学性能和结晶行为 [J]. 合成树脂及塑料, 2014, 31(01): 1
23 Meng H, Sui G X, Xie G Y, et al. Non-isothermal Crystallization Kinetics of Polyamide 6/Diamine modified MWNTs Nanocomposite [J]. Journal of Materials Science & Technology, 2009, 2: 3
24 Kazemi Y, Kakroodi A R, Park C B. Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-Walled carbon nanotube composites [J]. Polymer, 2019, 178: 121684
doi: 10.1016/j.polymer.2019.121684
25 Ghane N, Mazinani S, Gharehaghaji A A. Comparing the performance of electrospun and cast nanocomposite film of polyamide-6 reinforced with multi-wall carbon nanotubes [J]. Journal of Plastic Film and Sheeting, 2018, 35(1): 45
doi: 10.1177/8756087918794229
26 Zhou S T, Hrymak A N, Kamal M R, et al. Electrical, Morphological and Thermal Properties of Microinjection Molded Polypropylene/Multi-Walled Carbon Nanotubes Nanocomposites [J]. Journal of the Polymer Processing Society, 2018, 33(4): 514
27 Song B. Study on the properties of PA6 modified by multilayer graphene [J]. Modern Plastics Processing Application, 2017, 29(4): 42
27 宋 波. 多层石墨烯对PA6改性的性能研究 [J]. 现代塑料加工应用, 2017, 29 (04): 42
28 Aidan O N, Bakirtzis D, Dixon D. Polyamide 6/Graphene composites: The effect of in situ polymerisation on the structure and properties of graphene oxide and reduced graphene oxide [J]. European Polymer Journal, 2014, 59: 353
doi: 10.1016/j.eurpolymj.2014.07.038
29 Li C, Xiang M, Ye L. Intercalation structure and highly enhancing tribological performance of monomer casting nylon-6/graphene nano-composites [J]. Composites Part A: Applied Science & Manufacturing, 2017, 95: 274
30 Ding P, Su S, Song N, et al. Influence on thermal conductivity of polyamide-6 covalently-grafted graphene nanocomposites: varied grafting-structures by controllable macromolecular length [J]. Rsc Advances, 2014, 4(36): 18782
doi: 10.1039/c4ra00500g
31 Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon [J]. Journal of Materials Chemistry, 2009, 19(17): 2457
doi: 10.1039/b815239j
32 Zhao X R, Chen W, Han X, et al. Enhancement of interlaminar fracture toughness in textile-reinforced epoxy composites with polyamide 6/graphene oxide interlaminar toughening tackifier [J]. Composites Science and Technology, 2020, 191: 108094
doi: 10.1016/j.compscitech.2020.108094
33 Madhad H V, Vasava D V. Review on recent progress in synthesis of graphene-polyamide nanocomposites [J]. Journal of Thermoplastic Composite Materials, 2019, 35: 570
doi: 10.1177/0892705719880942
34 Wang Z, Tong X, Yang J C, et al. Improved strength and toughness of semi-aromatic polyamide 6T-co-6(PA6T/6)/GO composites via in situ polymerization [J]. Composites Science and Technology, 2019, 175: 6
doi: 10.1016/j.compscitech.2019.02.026
35 Zhao X, Li Y, Chen W, et al. Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization [J]. Composites Science and Technology, 2018, 171: 180
doi: 10.1016/j.compscitech.2018.12.023
36 Pablo G M, Ernesto H H, Salvador F T, et al. Exfoliation, reduction, hybridization and polymerization mechanisms in one-step microwave-assist synthesis of nanocomposite nylon-6/graphene [J]. Polymer, 2018, 146: 73
doi: 10.1016/j.polymer.2018.05.014
37 Gong L, Yin B, Li L P, et al. Nylon-6/gaphene composites modified through polymeric modification of gaphene [J]. Composites: Part B, 2015, 73: 49
doi: 10.1016/j.compositesb.2014.12.009
38 Huang H, Chen Y Z, Guo Y, et al. Structure and properties of PA6/GO nanocomposite by in-situ polymerization [J], Chinese Journal of Materials Research, 2019, 33(8): 621
38 黄 欢, 陈 林, 郭 怡 等. 原位聚合法制备PA6/GO纳米复合材料的结构与性能研究 [J]. 材料研究学报, 2019, 33(8): 621
39 Huang H, Yan L, Guo Y, Lin H L, et al. Morphological, mechanical and thermal properties of PA6 nanocomposites Co-Incorporated with Nano-Al2O3 and graphene oxide fillers [J]. Polymer, 2020, 188: 122119
doi: 10.1016/j.polymer.2019.122119
40 Hummers J R W S. Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339
doi: 10.1021/ja01539a017
41 Li X, Shao L, Song N. Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content [J]. Composites Part A: Applied Science & Manufacturing, 2016, 88: 305
42 Geon-Woong L, Min P, Junkyung K, al et, Enhanced thermal conductivity of polymer composites filled with hybrid filler [J]. Composites Part A: Applied Science & Manufacturing, 2005, 37: 727
43 Yu W, Xie H Q, Chen L F, et al. Graphene Nanoplatelets/Nylon 6 Composites With High Thermal Conductivity [J]. Journal of Engineering Thermophysics, 2013, 34(9): 1749
43 于 伟, 谢华清, 陈立飞 等. 高导热含石墨烯纳米片尼龙6复合材料 [J]. 工程热物理学报, 2013, 34(09): 1749
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.