Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 489-499    DOI: 10.11901/1005.3093.2021.148
  研究论文 本期目录 | 过刊浏览 |
不同热解碳界面层厚度C/ZrC-SiC复合材料烧蚀性能及其机理
杨晓辉1,2(), 李克智1, 白龙腾2, 郭亚威2
1.西北工业大学材料学院 西安 710072
2.西安航天动力研究所 西安 710010
Ablation Properties and Mechanisms of C/ZrC-SiC Composites with Pyrolytic Carbon Interlayer of Different Thickness
YANG Xiaohui1,2(), LI Kezhi1, BAI Longteng2, GUO Yawei2
1.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2.Xi'an Aerospace Propulsion Institute, Xi'an 710010, China
引用本文:

杨晓辉, 李克智, 白龙腾, 郭亚威. 不同热解碳界面层厚度C/ZrC-SiC复合材料烧蚀性能及其机理[J]. 材料研究学报, 2022, 36(7): 489-499.
Xiaohui YANG, Kezhi LI, Longteng BAI, Yawei GUO. Ablation Properties and Mechanisms of C/ZrC-SiC Composites with Pyrolytic Carbon Interlayer of Different Thickness[J]. Chinese Journal of Materials Research, 2022, 36(7): 489-499.

全文: PDF(19295 KB)   HTML
摘要: 

通过控制沉积时间制备S5-C/ZrC-SiC、S15-C/ZrC-SiC、S30-C/ZrC-SiC和S50-C/ZrC-SiC等不同热解碳界面层厚度的复合材料,研究了不同热解碳界面层厚度C/ZrC-SiC复合材料的密度与微观组织、烧蚀性能的变化规律及其机理。结果表明:随着热解碳界面层厚度的增大,C/ZrC-SiC复合材料SiC基体含量、密度和气孔率不断降低,但是裂解ZrC基体的含量表现出先降低而后增大的变化规律。S30-C/ZrC-SiC复合材料20 s短时间氧乙炔烧蚀性能最优,其质量烧蚀率和线烧蚀率分别-0.84 mg/s和3.00 μm/s;但是S15-C/ZrC-SiC复合材料长时间循环60 s烧蚀性能最优,其质量烧蚀率和线烧蚀率分别为1.22 mg/s和3.80 μm/s。其原因是,C/ZrC-SiC复合材料20 s氧乙炔烧蚀作用机理主要为机械冲刷,而C/ZrC-SiC复合材料的第二次60 s氧乙炔烧蚀发生了由机械冲刷向热物理和热化学烧蚀机理的转变。

关键词 复合材料热解碳界面层烧蚀性能烧蚀机理    
Abstract

Composites of C/ZrC-SiC with pyrolytic carbon (PyC) interlayers of different thickness, namely, S5-C/ZrC-SiC, S15-C/ZrC-SiC, S30-C/ZrC-SiC, and S50-C/ZrC-SiC were prepared by adjusting the deposition time. The variation of density, microstructure and ablation properties of C/ZrC-SiC composites with interlayer PyC of different thickness was systematically studied. The results show that with the increasing thickness of interlayer PyC, the density and porosity of C/ZrC-SiC composites decrease, but the content of the pioneer impregnation pyrolysis ZrC matrix decreases first and then increases. As for 20 s short time oxyacetylene ablation, S30-C/ZrC-SiC composites presents the best ablation performance, and its mass ablation rates and linear ablation rates are -0.84 mg/s and 3.00 μm/s, respectively; while for 60 s long time cycle ablation test, S15-C/ZrC-SiC composites has the best ablation performance, and its mass ablation rates and linear ablation rates are 1.22 mg/s and 3.80 μm/s, respectively. The mechanism for the 20 s oxyacetylene ablation of C/ZrC-SiC composites may be ascribed to mechanical erosion, while for the second 60 s oxyacetylene ablation of C/ZrC-SiC composites, the ablation mechanism may be described as that the ablation process changes from mechanical erosion to thermo-physical and thermo-chemical ablation.

Key wordscomposite    pyrolytic carbon interface    ablation behaviors    ablation mechanisms
收稿日期: 2021-02-24     
ZTFLH:  TB322  
基金资助:国家自然科学基金(U51521061);国家自然科学基金(51772247)
作者简介: 杨晓辉,男,1986年生,博士
SampleWeight before deposition/gWeight after deposition/gRelative weight gain rate/%Estimated thickness of interface layer/μm
S51121141.790.03
S1510812112.040.21
S3011615231.030.50
S5011818556.780.88
表1  PyC界面层沉积前后的增重率
图1  沉积时间不同的PyC界面层的SEM照片
SamplePyC/%PIP-SiC/%PIP-ZrC/%Density/g·cm-3Open porosity/%
S50.4463.0211.771.99±0.0422.77±1.82
S153.4262.079.991.95±0.0222.42±0.74
S309.9359.658.161.94±0.0120.77±1.87
S5022.4451.888.391.88±0.0219.45±1.33
表2  不同C/ZrC-SiC复合材料的PyC、SiC和ZrC含量、密度和气孔率
图2  PyC界面层厚度不同的C/ZrC-SiC复合材料截面的SEM照片
图3  PyC界面层厚度不同的C/ZrC-SiC复合材料的20 s烧蚀性能
图4  PyC界面层厚度不同C/ZrC-SiC复合材料的20 s烧蚀试样的宏观照片
图5  PyC界面层厚度不同的C/ZrC-SiC复合材料试样20 s烧蚀后的XRD谱
图6  PyC界面层厚度不同的C/ZrC-SiC复合材料烧蚀中心区裸露纤维的SEM微观形貌
图7  S50-C/ZrC-SiC复合材料20 s烧蚀试样的SEM微观形貌和EDS分析
图8  界面层厚度不同的C/ZrC-SiC复合材料第二次60 s烧蚀的宏观照片
SampleMass ablation rates/mg·s-1Linear ablation rates/μm·s-1Maximum ablation temperature/℃
20 s60 s20 s60 s20 s60 s
S5-1.591.627.085.3823942385
S15-1.121.226.833.8023822382
S30-0.841.133.007.4423592356
S50-1.461.084.024.6623232325
表3  PyC界面层厚度不同的C/ZrC-SiC复合材料的60和20 s烧蚀性能
图9  PyC界面层厚度不同的C/ZrC-SiC复合材料的导热系数
SampleMechanical scouring resistanceOxidation and ablation resistanceRemarks
S5★★★★★the more, the stronger their ability
S15★★★★★
S30★★★★
S50★★★★★
表4  PyC界面层厚度不同的C/ZrC-SiC复合材料的耐机械冲刷和耐氧化烧蚀能力
图10  PyC界面层厚度不同的C/ZrC-SiC复合材料和ZrO2的线热膨胀率
1 Glass D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles [A]. 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference [C]. Dayton, Ohio: AIAA, 2008
2 Balat-Pichelin M, Charpentier L, Panerai F, et al. Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase [J]. J. Eur. Ceram. Soc., 2015, 35: 487
doi: 10.1016/j.jeurceramsoc.2014.09.026
3 Chen Y F, Hong C Q, Hu C L, et al. Ceramic-based thermal protection materials for aerospace vehicles [J]. Adv. Ceram., 2017, 38: 311
3 陈玉峰, 洪长青, 胡成龙 等. 空天飞行器用热防护陶瓷材料 [J]. 现代技术陶瓷, 2017, 38: 311
4 Yang X H, Li K Z, Bai L T, et al. Thermal ablation behavior of SiC coating for 3D braided carbon fiber reinforced ZrC-SiC composites in different heat fluxes [J]. Vacuum, 2018, 156: 334
doi: 10.1016/j.vacuum.2018.07.035
5 Peng Z, Sun W, Xiong X, et al. A novel Cr-doped Al2O3-SiC-ZrC composite coating for ablative protection of C/C-ZrC-SiC composites [J]. J. Eur. Ceram. Soc., 2018, 38: 2897
doi: 10.1016/j.jeurceramsoc.2018.02.015
6 Wang S L, Li H, Ren M S, et al. Microstructure and ablation mechanism of C/C-ZrC-SiC composites in a plasma flame [J]. Ceram. Int., 2017, 43: 10661
doi: 10.1016/j.ceramint.2017.04.089
7 Zhao Z G, Li K Z, Kou G, et al. Mechanical properties and ablation behavior of C/C-ZrC and C/C-ZrC-SiC composites prepared by precursor infiltration and pyrolysis combined with chemical vapor infiltration [J]. Ceram. Int., 2018, 44: 23191
doi: 10.1016/j.ceramint.2018.09.131
8 Chen S A, Li G D, Hu H F, et al. Microstructure and properties of ablative C/ZrC–SiC composites prepared by reactive melt infiltration of zirconium and vapour silicon infiltration [J]. Ceram. Int., 2017, 43: 3439
doi: 10.1016/j.ceramint.2016.09.107
9 Zhang L R, Dong S M, Zhou H J, et al. 3D Cf/ZrC-SiC composites fabricated with ZrC nanoparticles and ZrSi2 alloy [J]. Ceram. Int., 2014, 40: 11795
doi: 10.1016/j.ceramint.2014.04.009
10 Wang Z, Dong S M, Ding Y S, et al. Mechanical properties and microstructures of Cf/SiC-ZrC composites using T700SC carbon fibers as reinforcements [J]. Ceram. Int., 2011, 37: 695
doi: 10.1016/j.ceramint.2010.09.048
11 Zhang M Y, Li K Z, Shi X H, et al. Effects of SiC interphase on the mechanical and ablation properties of C/C-ZrC-ZrB2-SiC composites prepared by precursor infiltration and pyrolysis [J]. Mater. Des., 2017, 122: 322
doi: 10.1016/j.matdes.2017.02.086
12 Yan C L, Liu R J, Cao Y B, et al. Preparation and properties of 3D needle-punched C/ZrC-SiC composites by polymer infiltration and pyrolysis process [J]. Ceram. Int., 2014, 40: 10961
doi: 10.1016/j.ceramint.2014.03.099
13 Yang B, Zhou X G, Yu J S. The properties of Cf/SiC composites prepared from different precursors [J]. Ceram. Int., 2015, 41: 4207
doi: 10.1016/j.ceramint.2014.12.111
14 Yang X H, Li K Z, Bai L T. Effects of preform structures on the mechanical and ablation properties of C/ZrC-SiC composites [J]. Int. J. Appl. Ceram. Technol., 2020, 17: 1582
doi: 10.1111/ijac.13464
15 Xie J, Li K Z, Sun G D, et al. Effects of surface structure unit of 2D needled carbon fiber preform on the microstructure and ablation properties of C/C-ZrC-SiC composites [J]. Ceram. Int., 2019, 45: 11912
doi: 10.1016/j.ceramint.2019.03.078
16 Yan C L, Liu R J, Zhang C R, et al. Effect of PyC interphase thickness on mechanical and ablation properties of 3D Cf/ZrC-SiC composite [J]. Ceram. Int., 2016, 42: 12756
doi: 10.1016/j.ceramint.2016.04.187
17 Wang D K, Dong S M, Zhou H J, et al. Effect of pyrolytic carbon interface on the properties of 3D C/ZrC–SiC composites fabricated by reactive melt infiltration [J]. Ceram. Int., 2016, 42: 10272
doi: 10.1016/j.ceramint.2016.03.155
18 Feng B, Li H J, Zhang Y L, et al. Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C-SiC-ZrC composites [J]. Corros. Sci., 2014, 82: 27
doi: 10.1016/j.corsci.2013.12.017
19 Li Q G, Zhou H J, Dong S M, et al. Fabrication and comparison of 3D Cf/ZrC-SiC composites using ZrC particles/polycarbosilane and ZrC precursor/polycarbosilane [J]. Ceram. Int., 2012, 38: 5271
doi: 10.1016/j.ceramint.2012.02.023
20 Matveeva A Y, Lomov S V, Gorbatikh L. Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: modelling investigation [J]. Comput. Mater. Sci., 2019, 159: 412
doi: 10.1016/j.commatsci.2018.10.031
21 Yin H F, Xu Y D, Zhang L T. Effect of deposition condition on deposition mode and morphology of pyrolytic carbon [J]. J. Inorg. Mater., 1999, 14: 769
21 尹洪峰, 徐永东, 张立同. 热解条件对热解碳沉积模式和形貌的影响 [J]. 无机材料学报, 1999, 14: 769
22 Yin H F, Xu Y D, Cheng L F, et al. Effect of interphases on the properties of 3-D Cf/SiCm composites [J]. J. Chin. Ceram. Soc., 2000, 28: 1
22 尹洪峰, 徐永东, 成来飞 等. 界面相对碳纤维增韧碳化硅复合材料性能的影响 [J]. 硅酸盐学报, 2000, 28: 1
23 Xie J, Li K Z, Li H J, et al. Ablation behavior and mechanism of C/C-ZrC-SiC composites under an oxyacetylene torch at 3000℃ [J]. Ceram. Int., 2013, 39: 4171
doi: 10.1016/j.ceramint.2012.10.273
24 Nie J J, Xu Y D, Zhang L T, et al. Microstructure, thermophysical, and ablative performances of a 3D Needled C/C-SiC composite [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 197
doi: 10.1111/j.1744-7402.2008.02341.x
25 Yang X H, Li K Z, Bai L T, et al. Effects of PyC interface thickness on the mechanical properties of 3D needled C/ZrC-SiC composites [J]. Aerospace Mater. Technol., 2021, 51(2): 38
25 杨晓辉, 李克智, 白龙腾 等. PyC界面层厚度对三维针刺C/ZrC-SiC复合材料力学性能影响规律 [J]. 宇航材料工艺, 2021, 51(2): 38
26 Wang L S. ZrO2 ceramic [J]. Ceram. Eng., 1997, 31: 40
26 王零森. 二氧化锆陶瓷 [J]. 陶瓷工程, 1997, 31: 40
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.