Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 298-306    DOI: 10.11901/1005.3093.2021.104
  研究论文 本期目录 | 过刊浏览 |
SiOC气凝胶/柔性陶瓷纤维复合材料的制备和性能
祝诗洋1, 潘栩3, 钟业盛1, 马晓亮1, 高岩1, 史丽萍1(), 李明伟1, 赫晓东1,2()
1.哈尔滨工业大学 特种环境复合材料技术国家级重点实验室 哈尔滨 150000
2.深圳烯创先进材料研究院有限公司 深圳 518000
3.苏州大学材料与化学化工学部 苏州 215000
Preparation and Properties of SiOC Aerogel/Flexible Ceramic Fiber Composite
ZHU Shiyang1, PAN Xu3, ZHONG Yesheng1, MA Xiaoliang1, GAO Yan1, SHI Liping1(), LI Mingwei1, HE Xiaodong1,2()
1.National Key Laboratory of Science and Technology on Advanced Composite in Special Environments, Harbin Institute of Technology, Harbin 150000, China
2.Shenzhen STRONG Advanced Materials Research Institute Co. Ltd., Shenzhen 518000, China
3.Department of Materials and Chemistry, Soochow University, Suzhou 215000, China
引用本文:

祝诗洋, 潘栩, 钟业盛, 马晓亮, 高岩, 史丽萍, 李明伟, 赫晓东. SiOC气凝胶/柔性陶瓷纤维复合材料的制备和性能[J]. 材料研究学报, 2022, 36(4): 298-306.
Shiyang ZHU, Xu PAN, Yesheng ZHONG, Xiaoliang MA, Yan GAO, Liping SHI, Mingwei LI, Xiaodong HE. Preparation and Properties of SiOC Aerogel/Flexible Ceramic Fiber Composite[J]. Chinese Journal of Materials Research, 2022, 36(4): 298-306.

全文: PDF(3243 KB)   HTML
摘要: 

选用正硅酸乙酯(TEOS)和甲基三甲氧基硅烷(MTMS)为前驱体,用溶胶-凝胶法制备不同C/Si(原子比,下同)比的SiOC气凝胶,再用大气喷涂法将其喷涂在柔性陶瓷纤维隔热毡中制备出SiOC气凝胶/柔性陶瓷纤维复合材料。C/Si比,是影响SiOC气凝胶/柔性陶瓷纤维复合材料性能的主要因素。随着C/Si比的提高SiOC溶液的凝胶时间延长且更易浸入隔热毡,材料的密度和热导率先降低后提高。C/Si比为0.67的材料热导率最低,其室温热导率为0.026 W/m·K,1000℃时的热导率为0.174 W/m·K。与未改性的隔热毡相比,其热导率显著降低,尤其是在高温下热导率降低47%;同时,这种材料还具有优异的耐高温和抗氧化性能,在1200℃空气中静烧1 h后试样的质量损失只约为1%,静烧3 h后约为5%,随着C/Si比的提高其质量损失随之提高;同时,SiOC气凝胶复合材料还具有良好的疏水性能、柔性和回弹性。

关键词 复合材料柔性纤维毡溶胶-凝胶SiOC气凝胶    
Abstract

SiOC aerogels with different C/Si ratio were prepared by sol-gel method with ethyl orthosilicate (TEOS) and methyl trimethoxysilane (MTMS) as precursor. Then the SiOC aerosol was sprayed on the flexible ceramic fiber insulation blanket by atmospheric spraying, therewith, the SiOC aerogel/flexible ceramic fiber composite material was successfully prepared. The C/Si ratio is an important factor affecting the performance of SiOC aerogel/flexible ceramic fiber composites. As the ratio of C/Si (atomic ratio) increases, the gel time of SiOC sol is prolonged, whilst it is easier to infiltrate into the insulation blanket; the density and thermal conductivity of the composite decrease first and then increase. When the ratio is 0.67 the thermal conductivity of the composite is the lowest, namely, 0.026 W/m·K at room temperature and 0.174 W/m·K at 1000℃ respectively. Compared with unmodified insulation blanket the thermal conductivity is significantly reduced, especially by 47% at high temperature environment. The composite has excellent high temperature resistance and oxidation resistance. At 1200℃ in air the mass loss percentage of the sample is about 1% after pyrolysising for 1 h, whilst about 5% after pyrolysising for 3 h. As the C/Si ratio increases the mass loss of the composite increasees; in addition, the SiOC aerogel composite material also has good hydrophobic properties, flexibility and resilience.

Key wordscomposite    flexible fiber blanket    sol-gel    SiOC aerogel
收稿日期: 2021-01-20     
ZTFLH:  TB322  
基金资助:深圳市科技计划(KQTD2016112814303055);哈尔滨工业大学特种环境复合材料技术国家级重点实验室基金(2019KX00914)
作者简介: 祝诗洋,男,1996年生,硕士生
图1  SiOC气凝胶复合材料的制备流程
Sample

TEOS

/mol

MTMS

/mol

EtOH

/mol

H2O

/mol

C/Si
1#0.200.13.03.00.33
2#0.100.12.02.00.50
3#0.090.11.91.90.53
4#0.080.11.81.80.56
5#0.070.11.71.70.59
6#0.050.11.51.50.67
7#0.040.11.41.40.71
表1  SiOC溶胶的原料配比
图2  SiOC溶胶的粘度与时间的关系
Sample1234567
Optimal gel time /min14233143486076
表2  SiOC溶胶的最佳凝胶时间
图3  陶瓷纤维和SiOC气凝胶/陶瓷纤维复合材料的微观形貌
图4  SiOC气凝胶/柔性陶瓷纤维复合材料的密度和热导率
图5  6#配方试样的热导率与温度的关系
图6  6#配方SiOC气凝胶复合材料在1200℃静烧后的微观形貌
图7  SiOC气凝胶复合材料在1200℃静烧后的质量损失率
图8  试样的润湿角
Time/d0#1#2#3#4#5#6#7#
01.2450.4890.5130.5530.7690.4640.6810.433
71.2480.4900.5140.5550.7720.4640.6830.433
141.2580.4900.5320.5570.7720.4650.6830.433
211.2620.4920.5320.5580.7740.4660.6840.436
281.3000.4930.5330.5590.7750.4700.6840.439
351.3500.5060.5330.5700.7890.4760.6990.445
Moisture content/%7.7783.3603.7522.9822.5352.5212.5752.697
表3  SiOC气凝胶/柔性陶瓷纤维复合材料的吸湿率
图9  SiOC气凝胶/柔性陶瓷纤维复合材料平面方向的柔性测试实物图
图10  6#配方试样的压缩测试实物
图11  6#配方试样的应力-应变曲线
1 Meng S H, Du S Y, Han J C. Research and development of thermal protection systems and materials [A]. Composite Materials——Basic, Innovative, Efficient: Proceedings of the 14th National Composite Materials Academic Conference (Part 1) [C]. Yichang: China Aerospace Press, 2006: 7
1 孟松鹤, 杜善义, 韩杰才. 热防护系统及材料的研究进展 [A]. 复合材料—基础、创新、高效: 第十四届全国复合材料学术会议论文集(上) [C]. 宜昌: 中国宇航出版社, 2006: 7
2 Shen Z C, Xia Y, Yang Y B, et al. Protection of materials and structures from space radiation environments on spacecraft [J]. Aerosp. Mater. Technol., 2020, 50(2): 1
2 沈自才, 夏 彦, 杨艳斌 等. 航天器空间辐射防护材料与防护结构 [J]. 宇航材料工艺, 2020, 50(2): 1
3 Shi Z H, Li K Z, Li H J, et al. Research status and application advance of heat resistant materials for space vehicles [J]. Mater. Rep., 2007, 21(8): 15
3 石振海, 李克智, 李贺军 等. 航天器热防护材料研究现状与发展趋势 [J]. 材料导报, 2007, 21(8): 15
4 Yang Y Z, Yang J L, Fang D N. Research progress on the thermal protection materials and structures in hypersonic vehicles [J]. Appl. Math. Mech., 2008, 29: 47
4 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展 [J]. 应用数学和力学, 2008, 29: 47
5 Myles T A, Tonawanda N Y. Flexible ceramic insulators for high temperature furnaces [P]. US Pat, 4240833, 1980
6 Chen Y F, Hong C Q, Hu C L, et al. Ceramic-based thermal protection materials for aerospace vehicles [J]. Adv. Ceram., 2017, 38: 311
6 陈玉峰, 洪长青, 胡成龙 等. 空天飞行器用热防护陶瓷材料 [J]. 现代技术陶瓷, 2017, 38: 311
7 Hoseini A, Bahrami M. Effects of humidity on thermal performance of aerogel insulation blankets [J]. J. Build. Eng., 2017, 13: 107
8 Chen C. Characterization of new silica fibers, preparation and properties of new silica fibers reinforced silica matrix composites [D]. Changsha: National University of Defense Technology, 2014
8 陈 晨. 新型石英纤维的表征及其石英基复合材料的制备与性能 [D]. 长沙: 国防科学技术大学, 2014
9 Lin H, Feng J, Feng J Z, et al. Development of thermal protection coatings for non-ablative thermal protection materials [J]. Mater. Rev., 2015, 29(21): 29
9 林 浩, 冯 坚, 冯军宗 等. 非烧蚀防隔热材料表面热防护涂层的研究进展 [J]. 材料导报, 2015, 29(21): 29
10 Xia G, Cheng W K, Qin Z Z. Development of flexible thermal protection for system inflatable re-entry vehicles [J]. Aerosp. Mater. Technol., 2003, 33(6): 1
10 夏 刚, 程文科, 秦子增. 充气式再入飞行器柔性热防护系统的发展状况 [J]. 宇航材料工艺, 2003, 33(6): 1
11 Devapal D, Gopakumar M P, Prabhakaran P V, et al. Ceramic coating on flexible external insulation blankets for reusable missions [J]. Curr. Sci., 2018, 114: 137
doi: 10.18520/cs/v114/i01/137-143
12 Kourtides D A, Churchward R A, Lowe D M. Protective coating for ceramic materials [P]. US Pat, 5296288, 1994
13 Nocentini K, Achard P, Biwole P, et al. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation [J]. Energy Build., 2018, 158: 14
doi: 10.1016/j.enbuild.2017.10.024
14 Hoseini A, Malekian A, Bahrami M. Deformation and thermal resistance study of aerogel blanket insulation material under uniaxial compression [J]. Energy Build., 2016, 130: 228
doi: 10.1016/j.enbuild.2016.08.053
15 Yang J, Li S K. Research on the dynamic mechanical property and failure mechanism of glass fiber reinforced aerogel [J]. Chin. J. Mater. Res., 2009, 23: 524
15 杨 杰, 李树奎. 玻璃纤维增强气凝胶的动态力学性能及其破坏机理 [J]. 材料研究学报, 2009, 23: 524
16 Gan L H, Chen L W, Zhang Y X. Preparation of Silica aerogels by non-supercritical drying [J]. Acta Phys. Chim. Sin., 2003, 19: 504
doi: 10.3866/PKU.WHXB20030605
16 甘礼华, 陈龙武, 张宇星. 非超临界干燥法制备SiO2气凝胶 [J]. 物理化学学报, 2003, 19: 504
17 Jones S M. Aerogel: Space exploration applications [J]. J. Sol-Gel Sci. Technol., 2006, 40: 351
doi: 10.1007/s10971-006-7762-7
18 Sorarù G D, Suttor D. High temperature stability of sol-gel-derived SiOC glasses [J]. J. Sol-Gel Sci. Technol., 1999, 14: 69
doi: 10.1023/A:1008775830830
19 Ma J, Ye F, Lin S J, et al. Large size and low density SiOC aerogel monolith prepared from triethoxyvinylsilane/tetraethoxysilane [J]. Ceram. Int., 2017, 43: 5774
doi: 10.1016/j.ceramint.2017.01.124
20 Jabbari M, Åkesson D, Skrifvars M, et al. Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinyl chloride)-coated fabric composite [J]. J. Reinf. Plast. Compos., 2015, 34: 1581
doi: 10.1177/0731684415578306
21 Yang H L, Ni W, Liang T, et al. Preparation and characterization of nanoporous super insulation materials reinforced with aluminum silicate fiber [J]. J. Mater. Eng., 2007, (7): 63
21 杨海龙, 倪 文, 梁 涛 等. 硅酸铝纤维增强纳米孔绝热材料的制备与表征 [J]. 材料工程, 2007, (7): 63
22 Shi X J, Zhang R F, He S, et al. Synthesis and heat insulation performance of glass fiber reinforced SiO2 aerogel composites [J]. J. Chin. Ceram. Soc., 2016, 44: 129
22 石小靖, 张瑞芳, 何 松 等. 玻璃纤维增韧SiO2气凝胶复合材料的制备及隔热性能 [J]. 硅酸盐学报, 2016, 44: 129
23 Feng J Z, Feng J, Wang X D, et al. Preparation of flexible fiber-reinforced aerogel composites for thermal insulation [J]. Rare Met. Mater. Eng., 2008, 37(): 170
23 冯军宗, 冯 坚, 王小东 等. 纤维增强气凝胶柔性隔热复合材料的制备 [J]. 稀有金属材料与工程, 2008, 37(): 170
24 Yu Y X, Wu X Y, San H S. Preparation and characterization of hydrophobic SiO2-glass fibers aerogels via ambient pressure drying [J]. J. Mater. Eng., 2015, 43(8): 31
24 余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征 [J]. 材料工程, 2015, 43(8): 31
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.