Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 107-113    DOI: 10.11901/1005.3093.2020.500
  研究论文 本期目录 | 过刊浏览 |
双网络Au NCs/HA/PVA复合水凝胶的荧光示踪性能和力学性能
廖静文, 饶春兴, 王艳芹(), 陈维毅
太原理工大学生物医学工程学院 太原 030024
Fluorescent Tracing Abilities and Mechanical Properties of Au NCs/HA/PVA Composite Hydrogel
LIAO Jingwen, RAO Chunxing, WANG Yanqin(), CHEN Weiyi
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

廖静文, 饶春兴, 王艳芹, 陈维毅. 双网络Au NCs/HA/PVA复合水凝胶的荧光示踪性能和力学性能[J]. 材料研究学报, 2022, 36(2): 107-113.
Jingwen LIAO, Chunxing RAO, Yanqin WANG, Weiyi CHEN. Fluorescent Tracing Abilities and Mechanical Properties of Au NCs/HA/PVA Composite Hydrogel[J]. Chinese Journal of Materials Research, 2022, 36(2): 107-113.

全文: PDF(4129 KB)   HTML
摘要: 

以聚乙烯醇(PVA)为原料、金纳米簇(Au NCs)和纳米羟基磷灰石(HA)为掺杂物、戊二醛作为交联剂,用化学交联法和循环冷冻-解冻法制备双网络Au NCs/HA/PVA复合水凝胶并检测其荧光特性、力学性能和溶胀率,研究了Au NCs含量和冷冻-解冻循环次数对其性能的影响。结果表明:这种凝胶具有较好的荧光特性;Au NCs与PVA的质量比为2.6%和冷冻-解冻循环次数为9次时,这种凝胶的力学性能最优并具有显著的荧光性能,其拉伸弹性模量、断裂强度以及断裂能分别达到63.09 kPa、152.84 kPa和130.36 kJ·m-3,含水率约为80%,与人体软骨组织的含水率相近。

关键词 复合材料双网络水凝胶力学表征金纳米簇荧光示踪    
Abstract

Composite hydrogel of Au NCs/HA/PVA with double network was prepared by means of chemical crosslinking and cyclic freezing-thawing with polyvinyl alcohol (PVA) as raw material, gold nanocluster (Au NCs) and hydroxyapatite (HA) as dopants, and glutaraldehyde as crosslinking agent. The effect of Au NCs content and the number of freezing-thawing cyclics on the physical properties of Au NCs/HA/PVA composite hydrogels was investigated. The results show that the mechanical strength of the gels increased with the increasing number of the freezing-thawing cycles. When the Au NCs content is 2.6% and the number of the freezing-thawing cyclic is 9, the gel has the optimized mechanical properties. The elastic modulus, breaking strength and fracture energy of the gel are 63.09 kPa, 152.84 kPa and 130.36 kJ·m-3, respectively. The moisture content is about 80%, which is similar to the human cartilage tissue, and shows remarkable fluorescence properties.

Key wordscomposite    double networks hydrogels    mechanical characterization    gold nanoclusters    fluorescence tracing
收稿日期: 2020-11-23     
ZTFLH:  R318.08  
基金资助:国家自然科学基金(12172243);山西省自然科学基金(2021-0302123158)
作者简介: 廖静文,女,1997年生,硕士生
图1  Au NCs/HA/PVA水凝胶的结构示意图
图2  Au NCs的TEM照片
图3  Au NCs的荧光光谱图
图4  在自然光和紫外光照射下不同Au NCs含量的Au NCs/HA/PVA复合水凝胶的照片
图5  不同Au NCs含量的Au NCs/HA/PVA复合水凝胶的断裂能
图6  不同Au NCs含量的Au NCs/HA/PVA复合水凝胶的断裂应变
图7  不同Au NCs含量的Au NCs/HA/PVA复合水凝胶拉伸时的弹性模量
图8  不同Au NCs含量的Au NCs/HA/PVA复合水凝胶压缩时的弹性模量
图9  Au NCs5.3/HA/PVA水凝胶的SEM照片
图10  不同次数冷冻-解冻循环的Au NCs/HA/PVA复合水凝胶的断裂能
图11  不同次数冷冻-解冻循环的Au NCs/HA/PVA复合水凝胶的断裂应变
图12  经过不同次数冷冻-解冻循环的Au NCs/HA/PVA复合水凝胶拉伸时的弹性模量
图13  经过不同次数冷冻-解冻循环的Au NCs/HA/PVA复合水凝胶压缩时的弹性模量
图14  不同Au NCs含量的Au NCs/HA/PVA复合水凝胶的溶胀比率与时间的关系
1 Lee K Y , Mooney D J . Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101: 1869
2 Niu C , Zhang H J , Yang B . A nanocomposite interpenetrating hydrogel with high toughness: effects of the posttreatment and molecular weight [J]. Colloid Polym. Sci., 2021, 299: 1
3 Pan T , Zhang Y , Wang C H , et al . Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability [J]. Compo. Sci. Technol., 2020, 188: 107991
4 Han X , Li M Y , Fan Z W , et al . PVA/Agar Interpenetrating network hydrogel with fast healing, high strength, antifreeze, and water retention [J]. Macromol. Chem. Phys., 2020, 221: 2070049
5 Ito K . Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions [J]. Polym. J., 2007, 39: 489
6 Yang J , Yu X Q , Sun X B , et al . Polyaniline-decorated supramolecular hydrogel with tough, fatigue-resistant, and self-healable performances for all-in-one flexible supercapacitors [J]. ACS Appl. Mater. Interfaces, 2020, 12: 9736
7 Rivero R E , Molina M A , Rivarola C R , et al . Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite [J]. Sens. Actuat., 2014, 190B: 270
8 Gonzalez J S , Ludueña L N , Ponce A , et al . Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings [J]. Mater. Sci. Eng., 2014, 34C: 54
9 Yang B W , Yuan W Z . Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal–mechanical dual sensors and electroluminescent devices [J]. ACS Appl. Mater. Interfaces, 2019, 11: 16765
10 Ramakrishna S , Mayer J , Wintermantel E , et al . Biomedical applications of polymer-composite materials: a review [J]. Compo. Sci. Technol., 2001, 61: 1189
11 Chen J R , Shi X T , Ren L , et al . Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility [J]. Carbon, 2017, 111: 18
12 Morariu S , Bercea M , Gradinaru L M , et al . Versatile poly (vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications [J]. Mater. Sci. Eng., 2020, 109C: 110395
13 Oh S H , An D B , Kim T H , et al . Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior [J]. Acta Biomater., 2016, 35: 23
14 Borghei Y S , Hosseini M , Ganjali M R . Oxidase-like catalytic activity of Cys-AuNCs upon visible light irradiation and its application for visual miRNA detection [J]. Sens. Actuat., 2018, 273B: 1618
15 Yu P , Bao R Y , Shi X J , et al . Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering [J]. Carbohydr. Polym., 2017, 155: 507
16 Chen Y M , Dong K , Liu Z Q , et al . Double network hydrogel with high mechanical strength: Performance, progress and future perspective [J]. Sci. China Technol. Sci., 2012, 55: 2241
17 Xu D D , Huang J C , Zhao D , et al . High‐flexibility, high‐toughness double‐cross‐linked chitin hydrogels by sequential chemical and physical cross‐linkings [J]. Adv. Mater., 2016, 28: 5844
18 Rana H H , Park J H , Ducrot E , et al . Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices [J]. Energy Storage Mater., 2019, 19: 197
19 Liu Z Z , Zhang J M , Liu J , et al . Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes [J]. J. Mater. Chem., 2020, 8A: 6219
20 Gong J P , Katsuyama Y , Kurokawa T , et al . Double‐network hydrogels with extremely high mechanical strength [J]. Adv. Mater., 2003, 15: 1155
21 Gao F Y , Wei D L , Zhang X , et al . Research progress of hydrogel and its application in biomedicine [J]. New Chem. Mater., 2018, 46(): 6
21 高凤苑, 韦东来, 张 鑫 等 . 水凝胶的研究进展及在生物医学方面的应用 [J]. 化工新型材料, 2018, 46(): 6
22 Zhang L , Zhang N , Cao Q F . Research progress in preparation methods of PVA hydrogels [J]. Chem. Ind. Times, 2018, 32(2): 29
22 张 林, 张 娜, 曹秋枫 . PVA水凝胶制备方法研究进展 [J]. 化工时刊, 2018, 32(2): 29
23 Hu X Y , Fan L D , Qin G , et al . Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor [J]. J. Power Sources, 2019, 414: 201
24 Li W W , Lu H , Zhang N , et al . Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors [J]. ACS Appl. Mater. Interfaces, 2017, 9: 20142
25 Liu M C , Guo J Y , Hui C Y , et al . Crack tip stress based kinetic fracture model of a PVA dual-crosslink hydrogel [J]. Extreme Mech. Lett., 2019, 29: 100457
26 Gong Z Y , Zhang G P , Zeng X L , et al . High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network [J]. ACS Appl. Mater. Interfaces, 2016, 8: 24030
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.