Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (12): 925-932    DOI: 10.11901/1005.3093.2020.486
  研究论文 本期目录 | 过刊浏览 |
MoS2/CoFe/C复合材料的制备和吸波性能
张远, 冀志江(), 解帅, 王静, 司甜甜
中国建筑材料科学研究总院有限公司 绿色建筑材料国家重点实验室 北京 100024
Preparation and Microwave Absorbing Properties of MoS2/CoFe/C Composite
ZHANG Yuan, JI Zhijiang(), XIE Shuai, WANG Jing, SI Tiantian
China Building Material Academy, State Key Laboratory of Green Building Materials, Beijing 100024, China
引用本文:

张远, 冀志江, 解帅, 王静, 司甜甜. MoS2/CoFe/C复合材料的制备和吸波性能[J]. 材料研究学报, 2021, 35(12): 925-932.
Yuan ZHANG, Zhijiang JI, Shuai XIE, Jing WANG, Tiantian SI. Preparation and Microwave Absorbing Properties of MoS2/CoFe/C Composite[J]. Chinese Journal of Materials Research, 2021, 35(12): 925-932.

全文: PDF(11673 KB)   HTML
摘要: 

先水热合成MoS2/CoFe2O4纳米复合吸波材料,再通过合理的物料配比并使用无水葡萄糖作为碳源和还原剂,使MoS2/CoFe2O4复合材料在氮气氛中还原为MoS2/CoFe/C三元纳米复合材料。对这种复合材料的形貌、相结构及电磁参数进行表征、模拟分析其最佳匹配厚度和吸波性能,研究了碳源浓度对复合材料的组成和性能的影响并根据弛豫理论讨论其吸波机制。结果表明,厚度为3 mm的这种复合材料在12.4 GHz处的最低反射损耗可达-42.9 dB;厚度为4 mm时低于-10 dB的频带宽度可达7.1 GHz。

关键词 复合材料吸波材料水热反应磁性纳米颗粒介电损耗    
Abstract

The composite absorbing material of MoS2/CoFe/C was prepared via a two-step process, namely, the MoS2/CoFe2O4 was hydro-thermally synthesized with anhydrous glucose as carbon source and reducing agent in a reasonable material ratio, which then was reduced to MoS2/CoFe/C of ternary-nanometer flower structure in nitrogen atmosphere. The morphology, phase structure and electromagnetic parameters of the ternary nanomaterial were characterized, while the relation of the optimum matching thickness and absorbing property of the composite was assessed with computer simulation. The effect of glucose concentrations on the composition and properties of the composites were investigated. The absorption mechanism was discussed based on the Relaxation Polarization theory. When the thickness is 3 mm the lowest reflectivity of MoS2/CoFe/C composite material at 12.4 GHz can reach -42.9 dB. When the thickness is 4 mm the reflectivity frequency of MoS2/CoFe/C composite material is lower than -10 dB with bandwidth up to 7.1 GHz.

Key wordscomposite    electromagnetic wave absorbing materials    hydrothermal reaction    magnetic nanoparticles    dielectric loss
收稿日期: 2020-11-12     
ZTFLH:  TB333  
基金资助:绿色建筑材料国家重点实验室十四五预研项目(ZA-23)
作者简介: 张远,男,1998年生,硕士生
图1  MoS2/CoFe2O4和MoS2/CoFe/C复合材料的XRD谱
图2  复合材料MoS2/CoFe2O4、MoS2/CoFe/C-0.234、MoS2/CoFe/C-0.468、MoS2/CoFe/C-0.702的扫描电镜照片以及MoS2@C@CoFe-0.468的选区元素面分布图(Mo, S, C, Fe, Co)
图3  复合材料MoS2/CoFe2O4、MoS2/CoFe/C-0.234、MoS2/CoFe/C-0.468和MoS2/CoFe/C-0.702的反射损耗
图4  复合材料MoS2/CoFe/C的磁滞回线和MoS2/CoFe/C的拉曼谱
图5  复合材料MoS2/CoFe2O4和MoS2/CoFe/C的相对复介电常数的实部ε'、虚部ε″和介电损耗角正切tan?δe,以及相对复磁导率的实部μ'、虚部μ″和磁损耗角正切tan?δμ
图6  复合材料MoS2/CoFe2O4和MoS2/CoFe/C的柯尔-柯尔图
1 Zhang W D, Zhang X, Wu H J, et al. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials [J]. J. Alloys Compd., 2018, 751: 34
2 Long L, Yang E Q, Qi X S, et al. Positive and reverse core/shell structure CoxFe3-xO4/MoS2 and MoS2/CoxFe3-xO4 nanocomposites: selective production and outstanding electromagnetic absorption comprehensive performance [J]. ACS Sustainable Chem. Eng., 2020, 8: 613
3 Cui X Q, Liu W, Gu W H, et al. Two-dimensional MoS2 modified using CoFe2O4 nanoparticles with enhanced microwave response in the X and Ku band [J]. Inorg. Chem. Front., 2019, 6: 590
4 Zhou C H, Wu C, Yan M. Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth [J]. ACS Appl. Nano Mater., 2018, 1: 5179
5 Green M, Chen X B. Recent progress of nanomaterials for microwave absorption [J]. J. Mater., 2019, 5: 503
6 Prasad J, Singh A K, Haldar K K, et al. CoFe2O4 nanoparticles decorated MoS2-reduced graphene oxide nanocomposite for improved microwave absorption and shielding performance [J]. RSC Adv., 2019, 9: 21881
7 Chen X L, Wang W, Shi T, et al. One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles [J]. Carbon, 2020, 163: 202
8 Luo J H, Zhang K, Cheng M L, et al. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption [J]. Chem. Eng. J., 2020, 380: 122625
9 He J, Liu S, Deng L W, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites [J]. Appl. Surf. Sci., 2020, 504: 144210
10 Aldea A, Bârsan V. Trends in Nanophysics: Theory, Experiment and Technology [M]. Berlin, Heidelberg: Springer, 2010
11 Yang R B, Liang W F. Microwave absorbing characteristics of flake-shaped FeNiMo/epoxy composites [J]. J. Appl. Phys., 2013, 113: 17A315
12 Kim S S, Kim S T, Yoon Y C, et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies [J]. J. Appl. Phys., 2005, 97: 10F905
13 Sheoran A, Kaur J, Kaur P, et al. Graphene based magnetic nanohybrids as promising catalysts for the green synthesis of β-amino alcohol derivatives [J]. J. Mol. Struct., 2020, 1204: 127522
14 Qian M C, Cheng X Y, Sun T T, et al. Synergistic catalytic effect of N-doped carbon embedded with CoFe-rich CoFe2O4 clusters as highly efficient catalyst towards oxygen reduction [J]. J. Alloys Compd., 2020, 819: 153015
15 Li J J, Yang S, Jiao P Z, et al. Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nano-sheets towards multifunctional foam [J]. Carbon, 2020, 157: 427
16 Li J W, Ding Y Q, Gao Q, et al. Ultrathin and flexible biomass-derived C@CoFe nanocomposite films for efficient electromagnetic interference shielding [J]. Composites, 2020, 190B: 107935
17 Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics [J]. IEEE Trans. Microwave Theory Techn., 1971, 19: 65
18 Zhang K, Ye M Q, Han A J, et al. Preparation, characterization and microwave absorbing properties of MoS2 and MoS2-reduced graphene oxide (RGO) composites [J]. J. Solid State Chem., 2019, 277: 68
19 An D, Bai L Z, Cheng S S, et al. Synthesis and electromagnetic wave absorption properties of three-dimensional nano-flower structure of MoS2/polyaniline nanocomposites [J]. J. Mater. Sci., 2019, 30: 13948
20 Huang L, Li J J, Wang Z J, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane [J]. Carbon, 2019, 143: 507
21 Wang S S, Zhao Y, Xue H L, et al. Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties [J]. Mater. Lett., 2018, 223: 186
22 Xie C J, Dong X L, Huang H, et al. Dielectric spectra fitting and polarization of Fe/Paraffin nanocomposites [J]. Chin. J. Mater. Res., 2013, 27: 349
22 谢昌江, 董星龙, 黄 昊等. 纳米Fe/石蜡复合材料的微波介电谱拟合及极化机制 [J]. 材料研究学报, 2013, 27: 349
23 Yan L W, Hong C Q, Sun B Q, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance [J]. ACS Appl. Mater. Interfaces, 2017, 9: 6320
24 Zhao B, Fan B B, Xu Y W, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features [J]. ACS Appl. Mater. Interfaces, 2015, 7: 26217
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.