Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (12): 893-902    DOI: 10.11901/1005.3093.2020.434
  研究论文 本期目录 | 过刊浏览 |
考虑温度和纤维含量影响的单向层合板材料的退化模型
吴一凡, 温卫东(), 崔海涛, 张宏建
南京航空航天大学能源与动力学院 南京 210016
Degradation Models of Unidirectional Laminated Board in Consideration of Volume Fraction of Reinforced Fiber and Temperature
WU Yifan, WEN Weidong(), CUI Haitao, ZHANG Hongjian
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

吴一凡, 温卫东, 崔海涛, 张宏建. 考虑温度和纤维含量影响的单向层合板材料的退化模型[J]. 材料研究学报, 2021, 35(12): 893-902.
Yifan WU, Weidong WEN, Haitao CUI, Hongjian ZHANG. Degradation Models of Unidirectional Laminated Board in Consideration of Volume Fraction of Reinforced Fiber and Temperature[J]. Chinese Journal of Materials Research, 2021, 35(12): 893-902.

全文: PDF(1853 KB)   HTML
摘要: 

根据复合材料的疲劳损伤机理,重新定义了疲劳损伤因子。根据这个疲劳损伤因子,提出了一种考虑纤维的含量和温度影响的单向纤维增强复合材料剩余刚度和剩余强度的模型;进而根据室温剩余刚度-剩余强度关联模型引入温度修正参数得到了一定温度下的剩余刚度-剩余强度关联模型,并进一步得到了与剩余刚度相关的剩余强度模型。于是,在建立剩余强度模型时减少了剩余强度的试验量和数据分散性的影响。最后,对现有文献中复合材料疲劳试验数据和剩余强度试验数据进行拟合,证明本文提出的剩余刚度模型和剩余强度模型精确描述了剩余刚度和剩余强度下降的规律。根据剩余刚度模型预测了不同纤维体积分数的复合材料在不同温度下剩余刚度衰减的规律。

关键词 复合材料损伤因子剩余刚度剩余强度温度纤维体积含量    
Abstract

The conventional fatigue damage factor was redefined by analyzing the relevant fatigue damage mechanisms in detail. Then, a model of residual-stiffness and -strength was individually proposed in consideration of the influence of reinforced fiber volume fraction and temperature on the properties of unidirectional fiber reinforced composites. Furthermore, by introducing temperature correction parameters into the above models of room temperature, a correlation model of residual strength with residual stiffness was further acquired, therewith the establish of residual strength model may be facilitated by reducing the dependance on the number of residual strength tests, and relieving the effect of data dispersion as well. Finally, the fatigue test data and residual strength test data of composite collected from the existing literatures were fitted and verified, it follows that the residual stiffness model and residual strength model can accurately describe the degradation behavior of residual stiffness and residual strength. The residual stiffness model can be also used to predict the degradation behavior of the residual stiffness of the composite with different fiber volume fraction at different temperature.

Key wordscomposite    damage factor    residual stiffness    residual strength    temperature    fiber volume fraction
收稿日期: 2020-10-19     
ZTFLH:  V258+.3  
基金资助:国家科技重大专项(2017-IV-0007-0044)
作者简介: 吴一凡,男,1996年生,硕士生
图1  复合材料的损伤扩展和刚度退化规律
Stacking sequenceVf/%T/
[45/-45]2S2820
[45/-45]3S3520
[45/-45]4S4320
表1  T300/HCGP-1复合材料的试验条件
图2  试样的几何形状示意图

Fitting

parameter

Fitting results

Fitting

parameter

Fitting results
k11.36k61.34
k2-0.76k71.47
k3-18.21k80.72
k412.22c10.71
k5-2.3c20.01
表2  剩余刚度模型的拟合结果
图3  正则化剩余刚度的变化曲线和验证
Fitting parameterFitting results
w0.9042
表3  剩余强度模型的拟合结果
图4  正则化剩余强度的变化曲线和验证
图5  试验设备
Stacking sequenceVf/%Temperature/℃
[0]847.2020
[0]847.20160
[0]1251.89160
[0]1251.89200
[0]1664.3220
表4  T300/QY8911-IV单向复合材料的试验条件
图6  试样的几何形状示意图

Fitting

parameter

Fitting

results

Fitting

parameter

Fitting results
k1-5.11k710.1
k22.56k8-10.11
k313c11.065
k4-10.88c21.318
k52.06k0.25
k6-0.1Tr-42.49
表5  剩余刚度模型的拟合结果
图7  正则化剩余刚度的变化曲线和验证
图8  温度对刚度退化规律的影响
图9  纤维体积分数对刚度退化规律的影响
Fitting parameterFitting results
w1.75
t25.37×10-3
s25.11×10-4
表6  剩余强度模型的拟合结果
图10  正则化剩余强度的变化曲线和验证
1 Shen J, Xie H Q. Development of research and application of the advanced composite materials in the aerospace engineering [J]. Mate. Sci. Technol., 2008, 16: 737
1 沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用 [J]. 材料科学与工艺, 2008, 16: 737
2 Huston R J. Fatigue life prediction in composites [J]. Int. J. Press. Vessels Piping, 1994, 59: 131
3 Yang J N, Jones D L, Yang S H, et al. A stiffness degradation model for graphite/epoxy laminates [J]. J. Compos. Mater., 1990, 24: 753
4 Gu Y, Yao W X. Residual strength of fibre-reinforced-plastics under fatigue loading [J]. Acta Mater. Compos. Sin., 1999, 16(3): 98
4 顾怡, 姚卫星. 疲劳加载下纤维复合材料的剩余强度 [J]. 复合材料学报, 1999, 16(3): 98
5 Wang S P. Two stage fatigue damage theory of composite [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2000
5 王三平. 复合材料疲劳损伤两阶段论 [D]. 北京: 北京航空航天大学, 2000
6 Jia B H, Li D H, Li W, et al. Research on stiffness reduction of composite laminates based on the two-stage theory of fatigue damage [J]. Fiber Reinf. Plast./Compos., 2010, (1): 16
6 贾宝惠, 李顶河, 李伟等. 基于疲劳损伤两段论的复合材料刚度降模型研究 [J]. 玻璃钢/复合材料, 2010, (1): 16
7 Cheng G X, Wei W, Li G Z. A general two stage model for accumulation of fatigue damage in composite materials [J]. Mater. Mech. Eng., 2000, 24(5): 1
7 程光旭, 韦玮, 李光哲. 复合材料疲劳损伤演化的两阶段模型 [J]. 机械工程材料, 2000, 24(5): 1
8 Wu F Q, Yao W X. Residual strength degradation model of fiber reinforced plastic [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2008, 40: 517
8 吴富强, 姚卫星. 纤维增强复合材料剩余强度衰减模型 [J]. 南京航空航天大学学报, 2008, 40: 517
9 Chen J W, Yao W X, Zong J D, et al. Probability model of residual stiffness of composite materials [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2019, 51: 534
9 陈基伟, 姚卫星, 宗俊达等. 复合材料剩余刚度概率模型研究 [J]. 南京航空航天大学学报, 2019, 51: 534
10 Gao J X. Research on residual strength model and life prediction method of fiber reinforced polymer [D]. Lanzhou: Lanzhou University of Technology, 2019
10 高建雄. 纤维增强复合材料剩余强度模型及寿命预测方法研究 [D]. 兰州: 兰州理工大学, 2019
11 Tanimoto T, Amijima S. Progressive nature of fatigue damage of glass fiber reinforced plastics [J]. J. Compos. Mater., 1975, 9: 380
12 Tanimoto T, Amijima S, Ishikawa H. A reliability analysis approach to fatigue life dispersion of laminated glass fiber composite materials [J]. Mech. Behav. Mater., 1980, 3: 207
13 Abdulmajeed A A, Närhi T O, Vallittu P K, et al. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite [J]. Dent. Mater., 2011, 27: 313
14 Allah M H A, Abdin E M, Selmy A I, et al. Effect of fibre volume fraction on the fatigue behaviour of GRP pultruded rod composites [J]. Compos. Sci. Technol., 1996, 56: 23
15 Mao H, Mahadevan S. Fatigue damage modelling of composite materials [J]. Compos. Struct., 2002, 58: 405
16 Qiu R. Research on fatigue life prediction and damage analysis of2.5D woven composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013
16 邱睿. 2.5维机织复合材料疲劳寿命预测模型与分析方法研究 [D]. 南京: 南京航空航天大学, 2013)
17 Song J. Mechanical behavior and fatigue prediction method of2.5D woven composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
17 宋健. 2.5维机织复合材料力学行为及寿命预测模型研究 [D]. 南京: 南京航空航天大学, 2016)
18 Shokrieh M M, Lessard L B. Progressive fatigue damage modeling of composite materials, Part II: material characterization and model verification [J]. J. Compos. Mater., 2000, 34: 1081
19 Kim J S, Bae K D, Lee C, et al. Fatigue life evaluation of composite material sleeve using a residual stiffness model [J]. Int. J. Fatigue, 2017, 101: 86
20 Yan H. Research on the shear fatigue performance of FRP composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008
20 严红. 纤维增强树脂基复合材料剪切疲劳性能研究 [D]. 南京: 南京航空航天大学, 2008.
21 Reifsnider K L, Henneke E G, Stinchcom W W, et al. Damage mechanics and NDE of composite laminates [A].
21 Hashin Z, Herakovich C T. Mechanics of Composite Materials [M]. New York: Pergamon Press, 1983: 399
22 Mivehchi H, Varvani-Farahani A. The effect of temperature on fatigue damage of FRP composites [J]. J. Mater. Sci., 2010, 45: 3757
23 Liang S X, Gning P B, Guillaumat L. Properties evolution of flax/epoxy composites under fatigue loading [J]. Int. J. Fatigue, 2014, 63: 36
24 Wang D Y. Research on prediction of damage failure and fatigue life for composite bolted joints [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006
24 王丹勇. 层合板接头损伤失效与疲劳寿命研究 [D]. 南京: 南京航空航天大学, 2006
25 Wu W F, Lee L J, Choi S T. A study of fatigue damage and fatigue life of composite laminates [J]. J. Compos. Mater., 1996, 30: 123
26 Zong J D, Yao W X. Compound model of residual stiffness degradation for FRP composites [J]. Acta Mater. Compos. Sin., 2016, 33: 280
26 宗俊达, 姚卫星. FRP复合材料剩余刚度退化复合模型 [J]. 复合材料学报, 2016, 33: 280
27 Bai Y, Keller T, Vallée T. Modeling of stiffness of FRP composites under elevated and high temperatures [J]. Compos. Sci. Technol., 2008, 68: 3099
28 Di Ludovico M, Piscitelli F, Prota A, et al. Improved mechanical properties of CFRP laminates at elevated temperatures and freeze-thaw cycling [J]. Construct. Build. Mater., 2012, 31: 273
29 Li J F, Guo H J, Gao Y, et al. Curing process and high temperature mechanical properties of MT300/802 bismaleimide matrix composites [J]. Aerosp. Mater. Technol., 2019, 49(4): 34
29 李健芳, 郭鸿俊, 高扬等. MT300/802双马树脂基复合材料固化工艺及高温力学性能 [J]. 宇航材料工艺, 2019, 49(4): 34
30 Liu W Q, Fang H, Fang Y. Research progress of fiber-reinforced composites and structures [J]. J. Build. Struct., 2019, 40(4): 1
30 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展 [J]. 建筑结构学报, 2019, 40(4): 1
31 Vieille B, Taleb L. About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: notched and unnotched laminates [J]. Compos. Sci. Technol., 2011, 71: 998
32 Song J, Wen W D. Study on mechanical properties of resin composites and models considering temperature environment [J]. J. Aerosp. Power, 2016, 31: 31
32 宋健, 温卫东. 考虑温度环境下树脂基复合材料力学性能及模型研究 [J]. 航空动力学报, 2016, 31: 31
33 Lee J H. An experimental and analytical investigation of the stiffness degradation of graphite/epoxy composite laminates under cyclic loading [D]. Washington:The George Washington University, 1989
34 Lian W, Yao W X. Residual stiffness-residual strength coupled model of composite laminates [J]. Acta Mater. Compos. Sin., 2008, 25(5): 151
34 廉伟, 姚卫星. 复合材料层压板剩余刚度-剩余强度关联模型 [J]. 复合材料学报, 2008, 25(5): 151
35 Qiu R, Wen W D, Cui H T. Material degradation models of unidirectional laminas considering fiber volume fraction [J]. J. Mater. Sci. Eng., 2013, 31: 728
35 邱睿, 温卫东, 崔海涛. 考虑纤维体积含量的单向层合板材料退化模型 [J]. 材料科学与工程学报, 2013, 31: 728
36 Lee C H, Jen M H R. Fatigue response and modelling of variable stress amplitude and frequency in AS-4/PEEK composite laminates, Part 2: analysis and formulation [J]. J. Compos. Mater., 2000, 34: 930
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.