Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 599-604    DOI: 10.11901/1005.3093.2019.570
  研究论文 本期目录 | 过刊浏览 |
尼龙66及其复合材料的热分解动力学
苗月珍, 王昕彤, 谢梦舒, 戚克振, 初增泽, 孙秋菊()
沈阳师范大学化学化工学院 沈阳 110034
Thermal Decomposition Dynamics of Nylon 66 and Its Composites
MIAO Yuezhen, WANG Xintong, XIE Mengshu, QI Kezhen, CHU Zengze, SUN Qiuju()
College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
引用本文:

苗月珍, 王昕彤, 谢梦舒, 戚克振, 初增泽, 孙秋菊. 尼龙66及其复合材料的热分解动力学[J]. 材料研究学报, 2020, 34(8): 599-604.
Yuezhen MIAO, Xintong WANG, Mengshu XIE, Kezhen QI, Zengze CHU, Qiuju SUN. Thermal Decomposition Dynamics of Nylon 66 and Its Composites[J]. Chinese Journal of Materials Research, 2020, 34(8): 599-604.

全文: PDF(3065 KB)   HTML
摘要: 

使用热重分析仪测定尼龙66(PA66)和两种不同玻纤增强尼龙66复合材料(GF/PA)的热分解曲线,用Kissinger法和Crane法研究了PA66和GF/PA的热分解动力学。结果表明:PA66、GF/PA-1和GF/PA-2的热分解反应级数分别为0.949、0.912和0.921,表明均为一阶热分解过程;热分解活化能分别为218.65 kJ/mol、121.81 kJ/mol和132.23 kJ/mol,表明玻纤的加入显著降低了PA66的热分解活化能。在加热速率相同的条件下两种GF/PA达到最大热分解速率的温度都比PA66的低,表明玻纤虽然改善了PA66的性能,但是加快了PA66的热分解过程,说明存在着“灯芯效应”。

关键词 复合材料尼龙66玻纤增强尼龙66热重分析热分解动力学    
Abstract

The thermal decomposition curves of nylon 66 (PA66) and two kinds of glass fiber reinforced nylon 66 composites (GF/PA) were measured by thermogravimetric analyzer, and the thermal decomposition kinetics of PA66 and GF/PA were investigated by the Kissinger method and Crane method. The results showed that the thermal decomposition reaction order of PA66, GF/PA-1 and GF/PA-2 were 0.949, 0.912 and 0.921, respectively, which were all consistent with first-order reactions with thermal decomposition activation energy of 218.65 kJ/mol, 121.81 kJ/mol and 132.23 kJ/mol, respectively. These results demonstrated that the incorporation of glass fiber reduced the thermal decomposition activation energy of PA66. In addition, by the same heating rate, the temperature corresponding to the maximum thermal decomposition rate for the two kinds of GF/PA was obviously lower than that for PA66, indicating that although glass fiber improved the performance of PA66, but accelerated the thermal decomposition process of PA66, and there was also a "wick effect".

Key wordscomposite    nylon 66    glass fiber reinforced nylon 66    thermogravimetric analysis    thermal decomposition kinetics
收稿日期: 2019-12-05     
ZTFLH:  TQ327.1  
基金资助:国家自然科学基金(51602207);辽宁省自然科学基金(20170540825)
作者简介: 苗月珍,女,1995年生,硕士生
图1  PA66、GF/PA-1和GF/PA-2的TG和DTG曲线
SampleT5%/℃T20%/℃Tmax/℃Tover/℃Residue remaining/%
PA66304.4423.3443.5486.81.91
GF/PA-1213.6422.1440.3489.933.16
GF/PA-2227.5405.5422.4486.933.37
表1  PA66和GF/PA的热分解数据
图2  PA66、GF/PA-1和GF/PA-2不同升温速率的TG曲线
图3  PA66、GF/PA-1和GF/PA-2不同升温速率的DTG曲线

β

/K·min-1

Tp/℃(1/Tp)/×10-3 K-1ln(β/Tp2)/K-1·min-1
PA66GF/PA-1GF/PA-2PA66GF/PA-1GF/PA-2PA66GF/PA-1GF/PA-2
5423.5410.7391.51.441.461.50-11.48-11.45-11.39
10438.4433.7413.41.411.411.46-10.83-10.82-10.76
15443.5440.3422.41.401.401.44-10.44-10.43-10.38
20448.5454.9428.01.391.371.43-10.17-10.18-10.11
表2  升温速率不同时PA66和GF/PA的Tp和相应的计算值
图4  PA66、GF/PA-1和GF/PA-2的ln(β/Tp2)~1/Tp线性拟合曲线
图5  PA66、GF/PA-1和GF/PA-2的lnβ~1/Tp线性拟合曲线
[1] Tang J. Sequence distribution, crystallization behavior and copolymerization kinetics of nylon 6/66 copolymer [D]. Shanghai: East China University of Science and Technology, 2018
[1] (汤杰. 尼龙6/66原位共聚物的序列分布、结晶行为及其反应动力学研究 [D]. 上海: 华东理工大学, 2018)
[2] Lv W Y. The research on essential flame retarded PA66 and PA66 composite materials [D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016
[2] (吕文晏. 本质阻燃PA66及其复合材料的研究 [D]. 南京: 南京航空航天大学, 2016)
[3] Yin W Y, Zhang H, Chen Z Y. The mechanical properties of PA66 composites reinforced by glass fiber [J]. West Leather, 2019, 41(19): 128
[3] (殷文英, 张慧, 陈志远. 玻纤增强PA66复合材料的力学性能 [J].西部皮革, 2019, 41(19): 128)
[4] Chen Y W. Study on the synthesis of phosphorus-containing flame retardant copolyamide66 and its properties [D]. Hangzhou: Zhejiang Sci-Tech University, 2015
[4] (陈勇伟. 含磷阻燃共聚PA66的合成及性能研究 [D]. 杭州: 浙江理工大学, 2015)
[5] Fu Q. Study on toughened and reinforced nylon66 with Non-halogen flame retardants [D]. Guangzhou: South China University of Technology, 2010
[5] (付强. 无卤阻燃增韧增强PA66的研究 [D]. 广州: 华南理工大学, 2010)
[6] Han Y, Xu Y, Liu Y, et al. An efficient interfacial flame-resistance mode to prepare glass fiber reinforced and flame retarded polyam‐ide 6 with high performance [J]. J Mater. Chem. A., 2013, 1(35): 10228
[7] Chen Y, Wang Q. Preparation, properties and characterizations of halogen-free nitrogen-phosphorous flame-retarded glass fiber rein‐forced polyamide 6 composite [J]. Polym. Degrad. Stabil., 2006, 91(9): 2003
[8] Dai Y R. Study on properties of aluminum diethylphosphinate retardent system on glass fiber reinforced flame retardent copolyamide 66 [D]. Hangzhou: Zhejiang Sci-Tech University, 2017
[8] (代彦荣. 二乙基次磷酸铝阻燃体系对玻纤增强阻燃共聚尼龙66的性能研究 [D]. 杭州: 浙江理工大学, 2017)
[9] Chen Z S. Study on glass-fiber reinforced poly (butylene terephthalate) preparation technology and synergistic flame retardant modification [D]. Fuzhou: Fujian Normal University, 2015
[9] (陈振树. 玻纤增强聚对苯二甲酸丁二醇酯的制备工艺探讨及协同阻燃改性研究 [D]. 福州: 福建师范大学, 2015)
[10] Zhu H G. Materials Science Research and Testing Methods (3rd Edition) [M]. Nanjing: Southeast University Press, 2016. 09: 311
[10] (朱和国. 材料科学研究与测试方法(第3版) [M]. 南京: 东南大学出版社, 2016. 09: 311)
[11] Xie J Z, Dai H X, Lin X P, et al. Study on the thermal stability of polyamide 66 fiber [J]. Synthetic Fiber in China, 2017, 46(08): 7
[11] (谢甲增, 戴宏翔, 林型跑等. 聚酰胺66纤维的热稳定性研究 [J]. 合成纤维, 2017, 46(08): 7)
[12] Zhang Y P, Dong C Z. Inorganic Chemistry (Part 1) [M]. Chengdu: University of Electronic Science and Technology Press, 2014, 07: 142
[12] (张玉平, 董翠芝. 无机化学(上) [M]. 成都: 电子科技大学出版社, 2014. 07: 142)
[13] Cao X X. Study on Thermal Analysis Kinetics of Linear Low Density Polyethylene and Polypropylene/Ore-derived Micro-powder Composites [M]. Xuzhou: China University of Mining and Technology Press, 2015, 04: 25
[13] (曹新鑫. 线性低密度聚乙烯、聚丙烯/矿生微粉复合材料的热分析动力学研究 [M]. 徐州: 中国矿业大学出版社, 2015. 04: 25)
[14] Yang R, Chen L, Yu J R, et al. Kinetics of thermal decomposition of domestic heterocyclic aromatic polyamide fibers [J]. Journal of Donghua University (Natural Science), 2014, 40(04): 379
[14] (杨锐, 陈蕾, 于俊荣等. 国产含杂环的芳香族聚酰胺纤维的热分解动力学 [J]. 东华大学学报(自然科学版), 2014, 40(04): 379)
[15] Xu X N,Wang F, Hua F. Study on thermal degradation kinetic of brominated polystyrene in synchronizing antimony trioxide flame-retarded PA66 [J]. Eng. Plast. Appl., 2010, 38(2): 55
[15] (徐晓楠, 王芳, 华菲. 溴化聚苯乙烯协同三氧化二锑阻燃PA66热分解动力学研究 [J]. 工程塑料应用, 2010, 38(2): 55)
[16] Ji C H. Study on thermal decomposition mechanism and kinetics of rare earth oxalates [D]. Ganzhou: Jiangxi University of Science and Technology, 2017
[16] (姬传红. 稀土草酸盐的热分解机理及动力学研究 [D]. 赣州: 江西理工大学, 2017)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.