Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 417-424    DOI: 10.11901/1005.3093.2019.492
  研究论文 本期目录 | 过刊浏览 |
超细晶纯钛疲劳裂纹的扩展行为
刘晓燕(), 柳奎君, 杨西荣, 王敬忠, 罗雷
西安建筑科技大学冶金工程学院 西安 710055
Fatigue Crack Propagation Behavior of Ultrafine Grained Pure Titanium
LIU Xiaoyan(), LIU Kuijun, YANG Xirong, WANG Jingzhong, LUO Lei
School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

刘晓燕, 柳奎君, 杨西荣, 王敬忠, 罗雷. 超细晶纯钛疲劳裂纹的扩展行为[J]. 材料研究学报, 2020, 34(6): 417-424.
Xiaoyan LIU, Kuijun LIU, Xirong YANG, Jingzhong WANG, Lei LUO. Fatigue Crack Propagation Behavior of Ultrafine Grained Pure Titanium[J]. Chinese Journal of Materials Research, 2020, 34(6): 417-424.

全文: PDF(2281 KB)   HTML
摘要: 

对纯钛进行2道次室温等径弯曲通道变形(ECAP)、等径弯曲通道变形加旋锻复合变形(ECAP+RS)并在旋锻后在300℃和400℃退火1 h,制备出4种具有不同组织的超细晶纯钛。对这4种超细晶纯钛进行疲劳裂纹扩展实验并观察分析超细晶纯钛的显微组织和疲劳断口的形貌,研究了裂纹的扩展行为。结果表明:显微组织对超细晶纯钛的疲劳裂纹扩展门槛值和近门槛区有显著的影响;超细晶纯钛的疲劳裂纹扩展门槛值随着塑性变形量的增大而增大,随着旋锻后退火温度的提高而降低;疲劳裂纹扩展速率曲线因超细晶纯钛晶粒尺寸和强度的影响出现转折,转折前ECAP+RS复合变形纯钛的抗疲劳裂纹扩展能力比ECAP变形强,且随着退火温度的提高而降低;转折后4种超细晶纯钛的疲劳裂纹扩展速率相差较小,呈现出相反的结果。疲劳裂纹扩展寿命中转折前近门槛区裂纹扩展寿命占绝大部分,因而转折前的门槛值与近门槛区的扩展速率对抗裂纹扩展能力更为重要。

关键词 金属材料超细晶纯钛疲劳裂纹扩展微观组织疲劳断口    
Abstract

Four kinds of ultrafine grained (UFG) pure titanium were obtained by two-pass equal channel angular pressing (ECAP) at room temperature, ECAP+rotary swaging (RS) and ECAP+RS followed by annealing at 300℃ and 400℃ for 1 h, respectively. The fatigue crack growth tests of different UFG pure titanium were carried out, while their microstructure, the fatigue fracture morphology and the crack growth behavior were investigated by TEM and SEM. Results show that the microstructure has a significant effect on the threshold of fatigue crack growth rate and the near threshold zone of UFG pure titanium. The threshold values of fatigue crack growth rate for UFG pure titanium increase with the increase of strain, and decrease with the increase of annealing temperature after RS. The turning point occurs in the fatigue crack growth rate curve, which is affected by grain size and strength of UFG pure titanium. Before the turning point, UFG pure titanium produced by ECAP+RS has stronger resistance to fatigue crack growth than that produced only by ECAP, and the resistance to fatigue crack growth of UFG pure titanium after ECAP+RS decreases with the increase of annealing temperature. After the turning point, the fatigue crack growth rates of four kinds of UFG pure titanium are slightly different and the opposite result is presented. The threshold value before the turning point and the growth rate of the near threshold zone may play much important role in enhancing the resistance to the crack growth because the growth life of the crack of the near threshold zone before the turning point accounts for a very large part of the fatigue crack growth life.

Key wordsmetallic materials    UFG pure titanium    fatigue crack growth    microstructure    fatigue fracture
收稿日期: 2019-10-23     
ZTFLH:  TG146.2+3  
基金资助:国家自然科学基金(51474170);教育厅专项项目(Z20190246)
作者简介: 刘晓燕,女,1980年生,博士
CHONFeTi
<0.08<0.015<0.18<0.03<0.2Bal.
表1  纯钛的化学成分
图1  单边缺口拉伸试样的尺寸
图2  超细晶纯钛的显微组织
MaterialsYS/MPaUTS/MPaδ/%
As-received32747933.5
ECAP52565815.8
ECAP+RS77491012.9
Annealing at 300℃ after ECAP+RS74687114
Annealing at 400℃ after ECAP+RS62578019
表2  超细晶纯钛的力学性能
图3  超细晶纯钛的疲劳裂纹扩展速率
Materials

Kth

/MPa?m1/2

Kth, crit

/MPa?m1/2

ECAP6.810.69
ECAP+RS9.611.71
Annealing at 300℃ after ECAP+RS9.211.26
Annealing at 400℃ after ECAP+RS7.310.65
表3  超细晶纯钛的裂纹扩展参数值
图4  超细晶纯钛的宏观扩展路径和宏观断口
图5  不同状态超细晶纯钛的疲劳断口形貌
[1] Shin M H, Baek S M, Polyakov A V, et al. Molybdenum disulfide surface modification of ultrafine-grained titanium for enhanced cellular growth and antibacterial effect [J]. Sci. Rep., 2018, 8: 9907
doi: 10.1038/s41598-018-28367-0 pmid: 29967339
[2] Wang M, Yang Y Q, Luo X. Research status in preparation and properties of uitra-fine grained Ti alloys [J]. Mater. Rep., 2013, 27(13): 94
[2] (王苗, 杨延清, 罗贤. 超细晶钛合金的制备及性能研究现状 [J]. 材料导报, 2013, 27(13): 94)
[3] Torre F D, Lapovok R, Sandlin J, et al. Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes [J]. Acta Mater., 2004, 52: 4819
doi: 10.1016/j.actamat.2004.06.040
[4] Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling [J]. Mater. Sci. Eng., 2003, 343A: 43
[5] Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post-deformation on CP-Ti processed by equal channel angular pressing [J]. Mater. Sci. Eng., 2008, 476A: 98
[6] Yin Z P. Structural Fatigue and Fracture [M]. Xi’an: Northwestern Polytechnical University Press, 2012
[6] (殷之平. 结构疲劳与断裂 [M]. 西安: 西北工业大学出版社, 2012)
[7] Vinogradov A. Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation [J]. J. Mater. Sci., 2007, 42: 1797
doi: 10.1007/s10853-006-0973-z
[8] Cavaliere P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals [J]. Int. J. Fatigue, 2009, 31: 1476
doi: 10.1016/j.ijfatigue.2009.05.004
[9] Qi W, Sun Q Y, Lin X, et al. Effect of surface nanocrystallization on fatigue behavior of pure titanium [J]. J. Mater. Eng. Perform., 2016, 25: 241
doi: 10.1007/s11665-015-1819-0
[10] Hyun C Y, Kim H K. Fatigue crack growth of ultrafine grained pure ti after severe plastic deformation [J]. Solid State Phenom, 2007, 124-126: 1385
doi: 10.4028/www.scientific.net/SSP.124-126
[11] Fintová S, Arzaghi M, Kuběna I, et al. Fatigue crack propagation in UFG Ti grade 4 processed by severe plastic deformation [J]. Int. J. Fatigue, 2017, 98: 187
doi: 10.1016/j.ijfatigue.2017.01.028
[12] Wang T B, Li B L, Li Y C, et al. High-speed deformation response of dislocation boundaries in commercially pure titanium [J]. Rare Met. Mater. Eng., 2017, 46: 1380
[12] (王同波, 李伯龙, 李颖超等. 工业纯钛位错界面的高速形变响应 [J]. 稀有金属材料与工程, 2017, 46: 1380)
[13] Wang Y B, Ho J C, Cao Y, et al. Dislocation density evolution during high pressure torsion of a nanocrystalline NiFe alloy [J]. Appl. Phys. Lett., 2009, 94: 191
[14] Zhu L W, Wang X N, Zhu Z S, et al. Near-threshold fatigue crack propagation behavior of TC4-DT damage tolerance titanium alloys [J]. Rare Met. Mater. Eng., 2014, 43: 1342
[14] (祝力伟, 王新南, 朱知寿等. 损伤容限型TC4-DT钛合金近门槛区疲劳裂纹扩展行为研究 [J]. 稀有金属材料与工程, 2014, 43: 1342)
[15] Li J, Zhu Z S, Wang X N, et al. Fatigue crack propagation behavior of TC4-DT alloy with quasi-β heat treatment [J]. Chin. J. Rare Met., 2017, 41: 745
[15] (李静, 朱知寿, 王新南等. 准β热处理工艺对TC4-DT钛合金裂纹扩展行为的影响 [J]. 稀有金属, 2017, 41: 745)
[16] Qian C F, Li H F, Cui W Y. Mode I crack tip plastic zone, dislocation-free zone and their effects on crack propagation [J]. Chin. J. Mater. Res., 2007, 21: 599
[16] (钱才富, 李慧芳, 崔文勇. I型裂纹尖端塑性区和无位错区及其对裂纹扩展的影响 [J]. 材料研究学报, 2007, 21: 599)
[17] Zhang S F, Zeng W D, Long Y, et al. Fatigue crack growth of TC17 titanium alloy with three microstructures [J]. Rare Met. Mater. Eng., 2018, 47(12): 167
[17] (张赛飞, 曾卫东, 龙雨等. 三种组织TC17合金的疲劳裂纹扩展行为 [J]. 稀有金属材料与工程, 2018, 47(12): 167)
[18] Zerbst U, Vormwald M, Pippan R, et al. About the fatigue crack propagation threshold of metals as a design criterion-A review [J]. Eng Fract Mech, 2016, 153: 190
doi: 10.1016/j.engfracmech.2015.12.002
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.