Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (12): 935-941    DOI: 10.11901/1005.3093.2019.321
  研究论文 本期目录 | 过刊浏览 |
炭基体的结构对C/C复合材料导电性能的影响
庞生洋1,刘峰2,胡成龙1,王石军1,汤素芳1()
1. 中国科学院金属研究所 沈阳 110016
2. 中国空间技术研究院总体部 北京 100094
Effect of Carbon Matrix Structure on Electrical Properties of C/C Composites
Shengyang PANG1,Feng LIU2,Chenglong HU1,Shijun WANG1,Sufang TANG1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110116, China
2. Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China
引用本文:

庞生洋,刘峰,胡成龙,王石军,汤素芳. 炭基体的结构对C/C复合材料导电性能的影响[J]. 材料研究学报, 2019, 33(12): 935-941.
Shengyang PANG, Feng LIU, Chenglong HU, Shijun WANG, Sufang TANG. Effect of Carbon Matrix Structure on Electrical Properties of C/C Composites[J]. Chinese Journal of Materials Research, 2019, 33(12): 935-941.

全文: PDF(4972 KB)   HTML
摘要: 

采用CVI+PIC工艺制备以2D碳纤维预制体为增强体、由不同炭基体结构组成的C/C复合材料,随后在不同温度对其进行热处理得到不同石墨化度的炭基体结构,研究了PyC/ReC比值和石墨化度对材料电阻率的影响。结果表明,随着PyC/ReC比的提高低密度C/C复合材料的电阻率在27.3×10-6~28.0×10-6 Ω·m间基本不变,因为石墨微晶的尺寸和结构完整性的增大与材料孔隙率的提高对电阻的影响相反。随着PyC/ReC比的提高,高密度C/C复合材料的电阻率从24.9×10-6 Ω·m降低到20.5 ×10-6 Ω·m。其可能的原因是,材料内部的孔隙较少,孔隙率的轻微提高使阻碍载流子在导电网络中的有效传递的作用显著下降。随着热处理温度从1800℃提高到2500℃,C/C复合材料的石墨化度明显提高,电阻率明显降低,其主要原因是载流子浓度的提高和晶界散射的减弱。

关键词 复合材料电阻率炭基体石墨化    
Abstract

C/C composites with different carbon matrix structures were prepared by CVI(chemical vapor infiltration) +PIC(resin precursor impregnation cracking) process using 2D carbon fiber needle-punched preforms as reinforcement and then were heat-treated at different temperatures. The effect of PyC (pyrolysis carbon)/ReC (resin carbon) ratio and degree of graphitization on the electrical resistivity of the composites was investigated. The results show that the electrical resistivity of the C/C composites of low density remains basically unchanged in a range of 27.3×10-6~28.0×10-6 Ω·m with the increase of PyC/ReC, which can be mainly attributed to the opposite effect of the increase of lattice size and structural integrity of graphite microcrystals and the increase of porosity of the composites. However, the electrical resistivity of C/C composites of high density decreases from 24.9×10-6 Ω·m to 20.5×10-6 Ω·m with the increase of PyC/ReC ratio. Because the slight increase of the porosity has a small contribution on the difference of electrical resistivity by hindering the effective carrier transfer in the conductive network for the C/C composites of low porosity. The graphitization degree of C/C composites increases and the electrical resistivity decreases with the heat treatment temperature increased from 1800℃ to 2500℃, which can be mainly attributed to the increase of carrier concentration and the weakening of grain boundary scattering.

Key wordscomposite    electrical resistivity    carbon matrix    graphitization
收稿日期: 2019-07-01     
ZTFLH:  TB332  
基金资助:国家自然科学基金(U1537204);国家自然科学基金(51802313);国家重点研发计划(2018YFF01013600);装备预研基金(61409220101);青促会优秀会员人才项目(2014171)
作者简介: 庞生洋,男,1986年生,工程师
图1  不同PyC:ReC比低密度C/C复合材料的微观结构
Serial number

PyC

/ReC

Volume ratio

Density

/g·cm-3

HTT

/℃

Porosity

/%

Electrical resistivity

/×10-6 Ω·m

10.081.46100014.628.0±0.3
20.321.48100016.527.3±0.3
30.771.48100019.527.5±0.3
40.091.7010001.024.9±0.3
50.241.7010003.122.9±0.3
60.501.7310004.320.5±0.3
表1  不同PyC/ReC比值的C/C复合材料孔隙率和电阻率
图2  高密度C/C复合材料的微观结构
图3  电子在复合材料中运动轨迹的示意图
图4  热处理后C/C复合材料的微观照片
Material systemHTT/℃1800210023002500
PyC/ReC=0.48Open porosity/%1.794.314.765.04
表2  热处理工艺不同的材料其开口孔隙率的变化
图5  在不同温度热处理后C/C复合材料的拉曼光谱
Material systemID/IG
Original1800℃2100℃2300℃2500℃
C/C composites1.071.000.760.300.27
PAN-Cf0.97--0.42-
PyC0.95--0.25-
ReC1.36--0.30-
表3  C/C复合材料(PyC/ReC=0.48)及不同类型炭单质在不同热处理温度下ID/IG值
图6  不同类型炭单质的原始态和在2300℃热处理后的拉曼光谱图
图7  电阻率与热处理温度的关系
[1] Birakayala N, Evans E A. A reduced reaction model for carbon CVD/CVI processes [J]. Carbon, 2002, 40(5): 675
[2] Li C Y, Li F A. Study on application of carbon/carbon composites [J]. New Chemical Materials, 2006, 34(3): 18
[2] (李翠云, 李辅安. 碳/碳复合材料的应用研究进展 [J]. 化工新型材料, 2006, 34(03): 18)
[3] Savage E. Carbon-Carbon Composites [M]. Landon: Springer Netherlands, 1993
[4] Li H J. C/C composites [J]. New Carbon Materials, 2001, 16 (2): 79
[4] (李贺军. 碳/碳复合材料 [J]. 新型炭材料, 2001, 16 (2): 79)
[5] Gajiwala H. M., K.Vaidya U., Sodah S. A., et al. Hybridized resin matrix approach applied for development of carbon/carbon composites—I [J]. Carbon. 1998, 36 (7-8): 903
[6] K.Vaidya U., Mahfuz H., Jeelan S.. NDE of structural and functional carbon-carbon composites after first carbonization [J]. J. Adv. Mater, 1995, 26 (2): 41
[7] Sun T M, Dong L M, Wang C, et al. Effect of porosity on the electrical resistivity of carbon materials [J]. New Carbon Materials, 2013, 28(05): 349
[7] (孙天鸣, 董利民, 王 晨等. 孔隙率对炭材料电阻率的影响 [J]. 新型炭材料, 2013, 28(05): 349)
[8] Zhang F Q, Huang Q Z, Huang B Y, et al. Effects of graphitization degree on the electrical conductivity of composites [J]. New Carbon Materials, 2001, (02): 45
[8] (张福勤, 黄启忠, 黄伯云等. C/C复合材料石墨化度与导电性能的关系 [J]. 新型炭材料, 2001, (02): 45)
[9] Hu G, Zeng X R, Zou J Z, et al. Dependence of the texture on the thermoelectric properties of C/C composites [J]. Journal of Inorganic Materials, 2015, 30(04): 357
[9] (胡 钢, 曾燮榕, 马 俊等. 炭/炭复合材料微观结构对热电性能的影响 [J]. 无机材料学报, 2015, 30(04): 357)
[10] Jiao Y, Sun L L, Guo P, et al. Preparation and property of a hierarchical porous carbon material [J]. Chinese Journal of Materials Research, 2017, 31(12): 881
[10] (焦 圆, 孙丽丽, 郭 鹏等. 新型多孔碳材料的制备和性能 [J]. 材料研究学报, 2017, 31(12): 881)
[11] Hsien Lin Hu, Tse Hao Ko, Wen Shyong Kuo. Changes in the microstructure and characteristics of carbon/carbon composites with mesophase mesocarbon microbeads added during graphitization [J]. Journal of Applied Polymer Science, 2010, 98(5): 2178
[12] Can Z, Guimin L U, Ze S, et al. Catalytic graphitization of carbon/carbon composites by lanthanum oxide [J]. Journal of Rare Earths, 2012, 30(2): 128
[13] Yang F C, Shao Y X, Hui C, et al. The effect of catalyzer in the matrix on the structure and performance of carbon/carbon composite [J]. Journal of Composite Materials, 2013, 47(4): 409
[14] Jin, Meng L H, Zhang Z Q. Effects of graphitization degree and fiber content on properties of C/C composites [J]. Materials Science and Technology, 2007, 15(2): 225
[14] (金 政, 孟令辉, 张志谦. 石墨化度及纤维含量对C/C复合材料性能的影响 [J]. 材料科学与工艺, 2007, 15(2): 225)
[15] Bourrat X, Fillion A, Naslain R, et al. Regenerative laminar pyrocarbon [J]. Carbon, 2002, 40: 2931
[16] Zhou S J, Su J M, Su Z A, et al. The influences of glassy carbon content on the properties of C/C composite [J]. New Carbon Materials, 2001, (01): 49
[16] (周绍建, 苏君明, 苏哲安等. 树脂炭含量对C/C复合材料性能的影响 [J]. 新型炭材料, 2001, (01): 49)
[17] Tang S F, Wang D L, Deng J Y, et al. Ablation properties of C/C composites with various needled preforms prepared by isothermal chemical vapor infiltration [J]. South Univ. Technol, 2007, 14(1): 13
[18] Wu X J, Cheng W, Qiao S R, et al. Evolution of pores in C/C composite during resin impregnationg-carbonization [J]. Acta Metallurgica Sinica, 2009, 45(11): 1402
[18] (吴小军, 程 文, 乔生儒等. 树脂浸渍炭化过程中C/C复合材料孔隙演化 [J]. 金属学报, 2009, 45(11): 1402)
[19] Fai?t A, L?hneysen H V. Electrical resistance and magnetoresistance of pyrocarbon at low temperatures in fields up to 14 Tesla [J]. Carbon, 2002, 40(3): 321
[20] Barykin B M, Spiridonov E G, Tarabanov A S. Electrical conductivity of glass-carbon [R] . Nasa Sti/recon, Technical Report N,1977, 77
[21] Wu X J, Qiao S R, Cheng W, et al. Micro-structure evolution law of C/C composites during heat treatment process [J]. Journal of Solid Rocket Technology, 2012, 34(3): 405
[21] (吴小军, 乔生儒, 程 文等. 高温处理过C/C复合材料微结构演变规律 [J]. 固体火箭技术, 2012, 34(3): 405)
[22] Yu S Q, Zhang W G. Effect of heat-treatment temperatureon mechanical properties of pyrocarbon and carbon/carbon composites [J]. Journal of Inorganic Materials, 2010, 25(03): 315
[22] (于守泉, 张伟刚. 热处理温度对热解炭及炭/炭复合材料力学性能的影响 [J]. 无机材料学报, 2010, 25(03): 315)
[23] Zou L H, Huang Q Z, Zou Z Q, et al. Characterization of graphitization degree for C/C composite [J]. Journal of Solid Rocket T echnology, 1998, (01): 45
[23] (邹林华, 黄启忠, 邹志强等. C/C复合材料石墨化度的测定和评价 [J]. 固体火箭技术, 1998(01): 45)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.