Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (10): 721-727    DOI: 10.11901/1005.3093.2019.138
  研究论文 本期目录 | 过刊浏览 |
750℃时效对GH4742合金疲劳裂纹扩展行为的影响
张星硕1,2,王磊1,2(),刘杨1,2,王斯堃1,2
1. 东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819
2. 东北大学材料科学与工程学院 沈阳 110819
Effect of Aging Treatment at 750℃ on Fatigue Crack Propagation Behavior of GH4742 Superalloy
ZHANG Xingshuo1,2,WANG Lei1,2(),LIU Yang1,2,WANG Sikun1,2
1. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

张星硕,王磊,刘杨,王斯堃. 750℃时效对GH4742合金疲劳裂纹扩展行为的影响[J]. 材料研究学报, 2019, 33(10): 721-727.
Xingshuo ZHANG, Lei WANG, Yang LIU, Sikun WANG. Effect of Aging Treatment at 750℃ on Fatigue Crack Propagation Behavior of GH4742 Superalloy[J]. Chinese Journal of Materials Research, 2019, 33(10): 721-727.

全文: PDF(12028 KB)   HTML
摘要: 

研究了在750℃时效处理的GH4742合金的组织演化对疲劳裂纹扩展行为的影响。结果表明,随着时效时间的延长合金中的块状一次γ′相长大且其边界圆滑化,花瓣状二次γ′相沿界面分裂,三次γ′相回溶在基体中或聚集长大成圆角方形γ′相。随着时效时间的延长合金疲劳裂纹的扩展速率呈增加趋势,主裂纹以绕过一次和二次γ′相的方式扩展。近门槛区的疲劳裂纹扩展速率对组织较为敏感,一次γ′相和二次γ′相边界的圆滑化使疲劳裂纹扩展速率提高,三次γ′相适当粗化可提高合金强度和ΔK较低区域裂纹的扩展抗力;Paris区和快速扩展区的应力强度因子范围ΔK较高,组织对疲劳裂纹扩展速率的影响降低。

关键词 金属材料GH4742合金时效疲劳裂纹扩展行为    
Abstract

The effect of the microstructure of GH4742 superalloy after aging at 750℃ on the fatigue crack propagation behavior were investigated. The results show that during aging the primary block like γ′-phase grows up with a smooth boundary, the secondary petal-shaped γ′-phase breaks along the boundary, and the thrice γ′-phase re-dissolves into the matrix or coarsens into corner square like γ′-phase. The main fatigue crack easily propagates across the region without the primary γ′-phase or the secondary γ′-phase. With the increasing aging time the fatigue crack propagation rate increases. Within the near-threshold region the fatigue crack propagation rate is very sensitive to the microstructure. The smooth boundaries of the primary γ′-phase and the secondary γ′-phase lead to the increase of fatigue crack propagation rate, but the fatigue crack propagation resistance increases with the appropriate coarsening of the thrice γ′-phase within the low ΔK region. Because the range of stress intensity factor ΔK is higher in both the Paris region and the rapid propagation region, the influence of the microstructure on the fatigue crack propagation rate is decreased.

Key wordsmetallic materials    GH4742 superalloy    aging    fatigue    crack propagation behavior
收稿日期: 2019-03-04     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金(U1708253);两机重大专项(基础研究)(2017-VI-0002)
作者简介: 张星硕,女,1991年生,硕士
图1  GH4742合金拉伸试样的尺寸
图2  GH4742合金疲劳裂纹扩展速率CT试样的尺寸
图3  GH4742合金标准热处理和750℃时效处理后γ′相的SEM形貌
图4  GH4742合金标准热处理后MC型碳化物的SEM形貌
图5  750℃时效GH4742合金疲劳裂纹的扩展速率曲线
SampleParis formula
SHTda/dN=1.62011×10-12K) 3.14277
Ada/dN=2.04743×10-13K) 3.81455
Bda/dN=1.72628×10-12K) 3.13395
Cda/dN=6.20958×10-13K) 3.47146
表1  750℃时效GH4742合金疲劳裂纹扩展速率Paris公式
图6  750℃时效GH4742合金近门槛区疲劳裂纹扩展路径的SEM形貌
Sample

Yield strength

/MPa

Tensile strength/MPa

Hardness

(HB)

SHT9261419368
A9761447383
B9551420378
C9031415373
表2  750℃时效GH4742合金室温拉伸性能和硬度值
图7  750℃时效GH4742合金疲劳裂纹扩展路径的SEM形貌
图8  750℃时效GH4742合金整体阶段裂纹扩展断口表面粗糙度
图9  750℃时效GH4742合金近门槛区、Paris区和快速扩展区裂纹扩展断口的形貌
[1] Guo J T. Material Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008.
[1] 郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008
[2] Guo J T, Zhou L Z, Yuan C ,et al. Microstructure and properties of several originally invented and unique superalloys in China [J]. The Chinese Journal of Nonferrous Metals, 2011, 02: 237
[2] 郭建亭, 周兰章, 袁 超等. 我国独创和独具特色的几种高温合金的组织和性能 [J]. 中国有色金属学报, 2011, 02: 237
[3] Qin H Y, Chen G, Zhu Q ,et al. High temperature low cycle fatigue behavior of GH4742 alloy [J]. Journal of Iron and Steel Research(International), 2015, 22(06): 551
[4] Zhang Y, Cao F R, Lin K Z ,et al. Dynamic recrystallization behavior of GH4742 superalloy [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(11): 3091
[4] 张 云, 曹富荣, 林开珍等. GH4742高温合金的动态再结晶行为 [J]. 中国有色金属学报, 2013, 23(11): 3091
[5] Huang X B, Kang Y, Zhou H H ,et al. Influence of heat treatment on the microstructure of a unidirectional Ni-base superalloy [J]. Materials Letters, 1998, 36(1): 210
[6] Huang Q X, Li H K. Superalloy [M]. Beijing: Metallurgical Industry Press, 2000
[6] 黄乾晓, 李汉康. 高温合金 [M]. 北京:冶金工业出版社, 2000
[7] Xie Y J, Liang X F, Liao H B ,et al. Microstructure and segregation elimination of superalloy GH742 ingot [J]. Journal of Iron and Steel Research, 2003, 15(7): 17
[7] 谢永军, 梁学峰, 缪宏博等. GH742合金钢锭的组织及偏析的消除 [J]. 钢铁研究学报, 2003, 15(7): 17
[8] Lu X D, Du J H, Deng Q ,et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy [J]. Journal of Alloys and Compounds, 2009, 486(1): 195
[9] Li W. Study on a new type of high property turbine plate GH742 alloy [D]. Beijing: Beijing Institute of Aerial Materials, 2003
[9] 李 伟. 新型高性能涡轮盘合金GH742的探索研究 [D]. 北京: 北京航空材料研究院, 2003
[10] Zhou G, Ding H, Cao F R ,et al. A comparative study of various flow instability criteria in processing map of superalloy GH4742 [J]. Journal of Materials Science & Technology, 2014 , 30(03): 217
[11] Beden S M, Abdullah S, Ariffin A K ,et al. Fatigue crack growth simulation of aluminium alloy under spectrum loadings [J]. Materials & Design, 2010, 31(7): 3449
[12] Chen L, Cai L, Yao D. A new method to predict fatigue crack growth rate of materials based on average cyclic plasticity strain damage accumulation [J]. Chinese Journal of Aeronautics, 2013, 26(1): 130
[13] Ren W J, Nicholas T. Effects and mechanisms of low cycle fatigue and plastic deformation on subsequent high cycle fatigue limit in nickel-base superalloy Udimet 720 [J]. Mater Sci Eng A, 2002, 332(1-2): 236
[14] Shyam A, Milligan W W. Effects of deformation behavior on fatigue fracture surface morphology in a nickel- base superalloy [J]. Acta Mater, 2004, 52(6): 1503
[15] ASTM E 647-15, Test method for measurement of fatigue crack growth rates [S].
[15] (ASTM E 647-15, 疲劳裂纹扩展速率测量试验方法 [S].
[16] Long Z D, Deng Q, Lin P ,et al. Effect of heat treatment on microstructure and mechanical properties of GH742 superalloy [J]. Journal of Materials Engineering, 1999, 03: 41
[16] 龙正东, 邓 群, 林 平等. 热处理对GH742合金组织和力学性能的影响 [J]. 材料工程, 1999, 03: 41
[17] Wang P, Dong J X, Yang L ,et al. Influencing factors of crack propagation rate of superalloy [J]. Materials Review, 2008, 22(6): 61
[17] 王 璞, 董建新, 杨 亮等. 高温合金裂纹扩展速率的影响因素 [J]. 材料导报, 2008, 22(6): 61
[18] Wang L. Mechanical Properties of Materials [M]. Shenyang: Northeastern University Press, 2014
[18] 王 磊. 材料的力学性能 [M]. 沈阳: 东北大学出版社, 2014
[19] Wang G Z. Fatigue of Materials [M]. Beijing: National Defense Industry Press, 1999
[19] 王光中等译. 材料的疲劳 [M]. 北京: 国防工业出版社, 1999
[20] Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2005
[20] 钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2005
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.