Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (10): 785-793    DOI: 10.11901/1005.3093.2019.110
  研究论文 本期目录 | 过刊浏览 |
热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响
吴汐玥1,2,陈志勇1,2(),程超1,2,刘建荣1,2,徐东生1,2,王清江1,2
1. 中国科学技术大学材料科学与工程学院 沈阳 110016
2. 中国科学院金属研究所 沈阳 110016
Effects of Heat Treatment on Microstructure, Texture and Tensile Properties of Ti65 Alloy
WU Xiyue1,2,CHEN Zhiyong1,2(),CHENG Chao1,2,LIU Jianrong1,2,XU Dongsheng1,2,WANG Qingjiang1,2
1. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

吴汐玥,陈志勇,程超,刘建荣,徐东生,王清江. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响[J]. 材料研究学报, 2019, 33(10): 785-793.
Xiyue WU, Zhiyong CHEN, Chao CHENG, Jianrong LIU, Dongsheng XU, Qingjiang WANG. Effects of Heat Treatment on Microstructure, Texture and Tensile Properties of Ti65 Alloy[J]. Chinese Journal of Materials Research, 2019, 33(10): 785-793.

全文: PDF(7846 KB)   HTML
摘要: 

研究了不同热处理条件下Ti65钛合金板材的显微组织和织构的变化规律,分析了板材织构的类型和热处理影响拉伸强度的机制。结果表明,热处理对板材的显微组织和织构类型具有显著的影响。通过热处理可分别得到具有等轴组织、双态组织或片层组织的板材。等轴组织板材的织构为晶体c轴与板材RD方向呈现70°~90°夹角的B/T型织构,双态组织和片层组织板材的主要织构类型与等轴组织类似,且出现晶体学c轴与RD方向平行的织构。双态组织板材内的位错和亚结构使板材的室温拉伸强度提高,但是对高温拉伸变形的阻碍能力有限。板材中的织构是影响合金力学性能各向异性的主要因素。经980℃/1 h/AC+700℃/4 h/AC热处理后的板材横、纵向拉伸强度的差异最小,且都具有较高的室温拉伸性能和最佳的650℃拉伸性能。

关键词 金属材料钛合金Ti65热处理显微组织织构力学性能    
Abstract

Microstructure- and texture-evolution of Ti65 Ti-alloy plate were investigated, and the tensile deformation mechanism of the plate after heat treatment with different texture were discussed. The results show that heat treatment has a significant influence on the evolution of microstructure and texture of the plate. Equiaxed-, duplex- and lamellar-microstructure would be obtained after different heat treatment. The plate with equiaxed microstructure presented a B/T texture, while the c-axis of the α-phase and the rolling direction (RD) met at a 70°~90° angle; similar texture could be found in duplex- and lamellar-microstructure, meanwhile a new texture that the c-axis of the α-phase paralleled to RD could be found in the alloy. Room temperature tensile strength of plates with duplex microstructure could be enhanced by the dislocations and sub-structures, while had little effect on tensile properties at high temperature. Texture was found to be the main factor affecting the anisotropy of tensile properties of Ti65 plates, the plate would possess good tensile properties without obvious anisotropy in tensile strength after heat treatment of 980℃/1 h/AC+700℃/4 h/AC.

Key wordsmatallic materials    Ti-alloy    Ti65    heat treatment    microstructure    texture    tensile properties
收稿日期: 2019-02-21     
ZTFLH:  TG146.2  
作者简介: 吴汐玥,女,1993年生,硕士
NumberHeat treatment
HT-α700℃/4 h/AC
HT-αβL980℃/1 h/AC+ 700℃/4 h/AC
HT-αβH1015℃/1 h/AC+ 700℃/4 h/AC
HT-β1055℃/1 h/AC+ 700℃/4 h/AC
表1  Ti65合金板材的热处理工艺
图1  经不同条件热处理后板材的显微组织
图2  经不同条件热处理后板材的{0001}和{112ˉ0}极图
Heat treatmentRp0.2/MPaRm/MPaσ/%
RDTDRDTDRDTD
HT-α105310701141116213.816.0
HT-αβL101610341100111913.514.3
HT-αβH103710731134118713.815.0
HT-β1060979116110956.09.8
表2  不同热处理条件下板材的室温拉伸性能
图3  经不同条件热处理后板材的室温拉伸强度变化趋势
Heat treatmentRp0.2/MPaRm/MPaσ/%
RDTDRDTDRDTD
HT-α35641055460466.444.8
HT-αβL42344456259049.331.0
HT-αβH45854462970824.517.5
HT-β578553716668/7.0
表3  不同热处理条件下板材的650℃拉伸性能
图4  经不同条件热处理后板材的650℃拉伸强度变化趋势
图5  经不同条件热处理后板材的微观组织中的位错与亚结构
图6  经不同条件热处理后板材RD和TD方向的反极图和等Schmid因子分布线图
[1] Liu Z, Liu P, Wang L ,et al. Fatigue properties of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si alloy produced by direct laser deposition [J]. Mat. Sci. Eng. A , 2018, 716: 140
[2] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aero. Mater. 2014, 34(4): 1
[2] 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
[3] Mao X N, Zhao Y Q, Yang G J. Development situation of the overseas titanium alloys used for aircraft engine [J]. Materials China, 2007, 26(5): 1
[3] 毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状 [J]. 中国材料进展, 2007, 26(5): 1
[4] Sukumar G, Bhav Singh B, A Bhattacharjee,et al. Ballistic impact behaviour of β-CEZ Ti alloy against 7.62 mm armour piercing projectiles [J]. Int. J. Impact Eng., 2013, 54: 149
[5] Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley, Fundamentals and Applications, 2003
[6] Davies P, Pederson R, M Coleman,et al. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air [J]. Acta Mater., 2016, 117: 51
[7] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mat. Sci. Eng. A, 1996, 213(1): 103
[8] Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater, 2013, 61(3): 844
[9] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mat. Sci. Eng. A, 1998, 243(1): 32
[10] Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81(1): 11
[11] Li W Y, Liu J R, Chen Z Y,et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32(6): 455
[11] 李文渊, 刘建荣, 陈志勇等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32(6): 455
[12] Shi P Y, Zhang Y Q, Sun F,et al. Influences of solution and aging temperature on microstructure and mechanical properties of the IMI834 alloy [J]. Special Casting & Nonferrous Alloys, 2017, 37(9): 936
[12] 史蒲英, 张永强, 孙 峰等. 固溶时效温度对IMI834钛合金组织和性能的影响 [J]. 特种铸造及有色合金, 2017, 37(9): 936
[13] Wang G Q, Zhao Z B, Yu B B ,et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31(5): 352
[13] 王国强, 赵子博, 于冰冰,等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31(5): 352
[14] Ma Y J, Liu J R, Lei J F ,et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chin. J. Mater. Res., 2008, 22(5): 555
[14] 马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22(5): 555
[15] Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales [J]. Acta Mater., 2008, 56(15): 3951
[16] Liu Z, Qin Z X, Liu F ,et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition [J]. Mater. Charact., 2014, 97: 132
[17] Li W, Chen Z, Liu J, et al. Effect of texture on anisotropy at 600℃in a near-α titanium alloy Ti60 plate [J]. Mat. Sci. Eng. A, 2017, 688: 322
[18] Es-Souni M. Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685 [J]. Metall. Mater. Trans. A, 2001, 32(2): 285
[19] Fu Y Y, Song Y Q, Hui S X ,et al. Research and application of typical aerospace titanium alloys [J]. Chinese Journal of Rare Metals, 2006, 30(6): 850
[19] 付艳艳, 宋月清, 惠松骁等. 航空用钛合金的研究与应用进展 [J]. 稀有金属, 2006, 30(6): 850
[20] Du Z, Xiao S, Xu L, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Design, 2014, 55(55): 183
[21] Nieh T G, Wadsworth J. Hall-petch relation in nanocrystalline solids [J]. Scr. Metall. Mater., 1991, 25(4): 955
[22] Mora L, Quesne C, Penelle R. Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part II. Relationships between thermomechanical treatments and tensile properties [J]. J. Mater. Res., 2011, 11(1): 89
[23] Xin S W, Zhao Y Q. Discussion About the Heat Treatment and Precipitated Phases of Titanium Alloy [J]. Heat Treat. Met-UK. 2006, 31(9): 39
[23] 辛社伟, 赵永庆. 关于钛合金热处理和析出相的讨论 [J]. 金属热处理, 2006, 31(9): 39
[24] Zhao L. Study on silicide of Ti-60A high-temperature titanium alloy and control of β grain size [D]. Shenyang, Institute of Metal Research, Chinese Academy of Sciences, 2008
[24] 赵 亮. Ti-60A合金中的硅化物及原始β晶粒尺寸控制研究 [D]. 沈阳, 中国科学院金属研究所, 2008
[25] Yapici G G, Karaman I, Maier H J. Mechanical flow anisotropy in severely deformed pure titanium [J]. Mat. Sci. Eng. A, 2006, 434(1): 294
[26] Nemat-Nasser S, Guo W G, Cheng J Y,Mechanical properties and deformation mechanisms of a commercially pure titanium [J]. Acta Mater., 1999, 47(13): 3705
[27] Kalinyuk A N, Trigub N P, Zamkov V N ,et al. Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V [J]. Mat. Sci. Eng. A, 2003, 346(1): 178
[28] Di W U, Wang G Q, Wang J D ,et al. Investigation on cold rolling for titanium sheet under tensional effect [J]. Journal of Northeastern University, 2008, 29(10): 1435-1437+1442
[29] Biavant K L, Pommier S, Prioul C. Local texture and fatigue crack initiation in a Ti‐6Al‐4V titanium alloy [J]. Fatigue Fract. Eng. M, 2010, 25(6): 527
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.