Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 621-628    DOI: 10.11901/1005.3093.2018.698
  研究论文 本期目录 | 过刊浏览 |
用原位聚合法制备的PA6/GO纳米复合材料的结构和性能
黄欢1,陈宇哲1,郭怡1,蔺海兰1,王丽君1,马素德1,卞军1(),谷志杰2
1. 西华大学材料科学与工程学院 成都 610039
2. 日本国立东京农工大学 生物应用与系统工程研究生院 东京 184-8588 日本
Structure and Properties of PA6/GO Nanocomposite by In-situ Polymerization
Huan HUANG1,Yuzhe CHEN1,Yi GUO1,Hailan LIN1,Lijun WANG1,Sude MA1,Jun BIAN1(),Zhijie GU2
1. College of Materials Science and Engineering, Xihua University, Chengdu 610039, China
2. Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
引用本文:

黄欢,陈宇哲,郭怡,蔺海兰,王丽君,马素德,卞军,谷志杰. 用原位聚合法制备的PA6/GO纳米复合材料的结构和性能[J]. 材料研究学报, 2019, 33(8): 621-628.
Huan HUANG, Yuzhe CHEN, Yi GUO, Hailan LIN, Lijun WANG, Sude MA, Jun BIAN, Zhijie GU. Structure and Properties of PA6/GO Nanocomposite by In-situ Polymerization[J]. Chinese Journal of Materials Research, 2019, 33(8): 621-628.

全文: PDF(7888 KB)   HTML
摘要: 

以己内酰胺(CL)和6-氨基己酸(ACA)为聚合反应单体,用Hummers法制备氧化石墨烯(GO),再以GO为纳米填料用原位开环聚合法制备了GO改性PA6纳米复合材料(PA6/GO),并对PA6/GO纳米复合材料的结构及性能进行了研究。结果表明,PA6的黏均分子量达到104数量级,但加入过多的GO使PA6的分子量降低。形貌分析表明,GO均匀地分散在PA6基体中,并诱导了PA6基体的晶型由α晶型转变成γ晶型。同时,GO作为异相成核剂促进了PA6/GO复合材料中PA6基体的结晶,提高了PA6/GO复合材料的结晶度。拉伸测试结果表明,随着GO的加入PA6/GO纳米复合材料的拉伸强度先提高后降低,GO加入量为0.4份时拉伸强度达到最大值61.72 MPa,比纯PA6(48.52 MPa)提高了27.21%。导热性能分析表明含1.0份GO的PA6/GO纳米复合材料其50℃和100℃的热导率分别为0.317 W/(m·K)和0.280 W/(m·K),较纯PA6分别提高了33.19%和33.23%。

关键词 复合材料尼龙6(PA6)氧化石墨烯(GO)力学性能导热性能    
Abstract

Graphene oxide (GO) modified polyamide 6 nanocomposites (PA6/GO) were prepared by in-situ ring-opening polymerization with caprolactam (CL) and 6-aminocaproic acid (ACA) were used as polymerization monomers and GO as nano-filler. The structure and morphology of PA6/GO nanocomposites were characterized. The results shows that GO was uniformly dispersed in the PA6 matrix. The viscosity average molecular mass of PA6 reached 104 orders of magnitude, but the excessive addition of GO would decrease the molecular mass of synthesized PA6. The addition of GO induced the transformation of crystallographic structure of the PA6 matrix from α-type to γ-type. At the same time, as a heterogeneous nucleating agent, GO promotes the crystallization of PA6 matrix in PA6/GO composites, and increases the crystallinity of PA6/GO composites.. Tensile strength of PA6/GO composites increased first and then decreased with the addition of GO. When the amount of GO was 0.4% (in mass fraction), the tensile strength of PA6/GO nanocomposites reached a maximum of 61.72 MPa, which was superior to that of pure PA6 (48.52 MPa) by 27.21%. When the GO content was 1.0% the thermal conductivity of PA6/GO nanocomposites reached 0.317 W/(m·K) and 0.280 W/(m·K) at 50℃ and 100℃, which were 33.19% and 33.23% higher than that of pure PA6, respectively.

Key wordscomposites    Nylon 6 (PA6)    graphene oxide (GO)    mechanical properties    thermal conductivity
收稿日期: 2018-12-10     
ZTFLH:  TQ332  
基金资助:国家教育部春晖计划(Nos. Z2018088);国家教育部春晖计划(Nos. Z2017070);西华大学大健康管理促进中心开放课题基金(No. DJKG2019-002);国家级大学生创新创业训练计划(Nos. 201910623XXX);国家级大学生创新创业训练计划(Nos. 201810623007);四川省青年科技创新研究团队项目(No. 2019JDTD0024)
作者简介: 黄 欢,女,1995年生,硕士生
图1  用原位聚合法制备PA6/GO纳米复合材料的示意图
图2  GO存在下己内酰胺开环聚合反应示意图
图3  PA6/GO纳米复合材料的红外光谱图
SamplesViscosity average molecular weigh
PA63.23×104
C-A-G(100/10/0)2.98×104
C-A-G(100/10/0.05)2.94×104
C-A-G(100/10/0.1)3.02×104
C-A-G(100/10/0.2)2.91×104
C-A-G(100/10/0.4)2.94×104
C-A-G(100/10/0.8)2.85×104
C-A-G(100/10/1.0)2.64×104
表1  PA6/GO纳米复合材料的黏均分子量
图4  PA6/GO纳米复合材料的XRD图谱
图5  PA6/GO纳米复合材料的结晶曲线和熔融曲线
Samples

Tc

/℃

Xc

/%

Hm

/J·g-1

Tm

/℃

C-A-G(100/10/0)183.427.2162.60218.0
C-A-G(100/10/0.1)184.628.3065.04218.1
C-A-G(100/10/0.2)186.020.5147.09220.1
C-A-G(100/10/0.4)191.929.7468.13221.4
C-A-G(100/10/1.0)189.827.9163.55218.6
表2  PA6/GO纳米复合材料的DSC熔融-结晶参数
图6  PA6/GO纳米复合材料的拉伸强度
图7  PA6/GO纳米复合材料拉伸断面的SEM照片
图8  PA6/GO纳米复合材料的热导率
[1] Hee K, Chae D Y, Siberio P, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427(6974): 523
[2] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385
[3] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. American Physical Society, 2008: 206
[4] Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites [J]. Applied Physics Letters, 1998, 73(26): 3842
[5] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902
[6] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183
[7] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene based composite materials [J]. Nature, 2006, 442, 282
[8] Li Y C, Huang X R, Zeng L J, et al. A review of the electrical and mechanical properties of carbon nanofiller reinforced polymer composites [J]. Journal of Materials Science, 2019, 54(2): 1036
[9] Nie G D, Zhu Y, Tian D, et al. Research progress in the electrospun nanofiber based supercapacitor electrode materials [J]. Chemical Journal of Chinese Universities Chinese, 2019, 39(7): 1349
[10] Bian J, Wang G, Zhou X, et al. Preparation and properties of functionalized graphene-carbon nanotube synergistic toughening HDPE nanocomposites [J]. Chinese Journal of Materials Research, 2017, 31(2): 1
[10] 卞 军, 王 刚, 周 醒等.功能化石墨烯-碳纳米管协同强韧化HDPE纳米复合材料的制备和性能 [J]. 材料研究学报, 2017, 31(2): 1
[11] Yousefi N, Lin X Y, Zhang Q B, et al. Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites [J]. Carbon, 2013, 59(7): 406
[12] Sengupta R, Bhattacharya M, Band-yopadhyay S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites [J]. Progress in Polymer Science, 2011, 36(5): 638
[13] Si J, Li J, Wang S, et al. Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide [J]. Composites Part A, 2013, 54(4): 162
[14] Zhou Q, Bian J, Wang G, et al. Preparation and properties of functionalized nano-graphene oxide/POE-g-MAH polystyrene composites [J]. Journal of Composite Materials, 2016, 33(2): 1
[14] 周 强, 卞 军, 王 刚等. 功能化纳米氧化石墨烯/POE-g-MAH聚苯乙烯复合材料的制备与性能 [J]. 复合材料学报, 2016, 33(2): 1
[15] O'Neill A, Bakirtzis D, Dixon D. Polyamide 6/graphene composites: the effect of in situ polymerization on the structure and properties of graphene oxide and reduced graphene oxide [J]. European Polymer Journal, 2014, 59(1): 353
[16] Lu H M, Li X H, Xu X M, et al. Research progress in nylon nanocomposites [J]. Polymer Bulletin, 2006(11): 63
[16] 卢会敏, 李小红, 徐翔民等. 尼龙纳米复合材料研究进展 [J]. 高分子通报, 2006(11): 63
[17] Huang L D, Lin Z Y, Qian H, et al. Research progress of nylon 6 na-nocomposites [J]. Engineering Plastics Application, 2005, 33(2): 64
[17] 黄丽丹, 林志勇, 钱 浩等. 尼龙6纳米复合材料研究进展 [J]. 工程塑料应用, 2005, 33(2): 64
[18] Liu W. Preparation and properties of grafted nylon 6 on nano-silica surface [D]. Changsha: Hunan University, 2010: 1
[18] 刘 玺. 纳米二氧化硅表面引发接枝尼龙6的制备及性能研究 [D]. 长沙: 湖南大学, 2010: 1
[19] Hou L C, Liu H H, Wang N, et al. Preparation and functionalization of functionalized carbon nanotubes/carbon nanotube/nylon 6 composite fiber [J]. Journal of Composite Materials, 2013, 30(1): 45
[19] 侯立晨, 刘海辉, 王 宁等. 功能化碳纳米管的制备及功能化碳纳米管/尼龙6复合纤维 [J]. 复合材料学报, 2013, 30(1): 45
[20] Liu C M, You Y L, Dai J Y, et al. Study on properties of polyamide 6/montmorillonite composites [J]. Journal of Hunan City University, 2017, 26(1): 76
[20] 刘晨明, 游一兰, 代佳洋等. 聚酰胺6/蒙脱土复合材料的性能研究 [J]. 湖南城市学院学报, 2017, 26(1): 76
[21] Wang G, Wang B, Park J. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method [J]. Carbon, 2009, 47(1): 68
[22] Nguyen L, Choi S M, Kim D H, et al. Preparation and characterization of nylon 6 compounds using the nylon 6-grafted GO [J]. Macromolecular Research, 2014, 22(3): 257
[23] Zhang X Q, Fan X Y, Li H Z, et al. Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization [J]. Journal of Materials Chemistry, 2012, 22(45), 24081
[24] Hummers J W S, Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339
[25] Peng Z H, Shi Z P. Handbook of Polyamide Industry [M]. Beijing: Chemical Industry Press, 2001: 78
[25] 彭治汉, 施祖培. 聚酰胺工业手册 [M]. 北京: 化学工业出版社, 2001: 78
[26] Cai Y, Huang F, Wei Q, et al. Structures, thermal stability, and crystalline properties of polyamide 6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning [J]. Journal of materials science, 2008, 43(18): 6132
[27] Gu W X, Wu P Y, Yang Y L. Two dimensional infrared correlation analysis of nylon 6 heating process [J]. Acta Chimica Sinica, 2004(20): 2123
[27] 顾伟星, 武培怡, 杨玉良. 尼龙6升温过程的二维红外相关分析研究 [J]. 化学学报, 2004(20): 2123
[28] Flory P J. Principles of Polymer Chemistry [M]. New York: Cornell University Press, 1953
[29] Fu X B. Preparation, structure and properties of graphene/PA6 nanocomposites[D]. Hefei: Hefei University of Technology, 2016: 1-157
[29] 付绪兵. 石墨烯/PA6纳米复合材料的制备、结构与性能 [D]. 合肥: 合肥工业大学, 2016: 1-157
[30] Zhang P P. Preparation and structural properties of polyamide 6 nanofibers and graphene composites [D]. Shanghai: Donghua University, 2013: 1-85
[30] 张培培. 聚酰胺6纳米纤维及石墨烯复合材料的制备和结构性能研究 [D]. 上海: 东华大学, 2013: 1-85
[31] Cheng S, Chen X, Hsuan Y G, et al. Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites [J]. Macromolecules, 2012, 45(2): 993
[32] Zhang X Q, Fan X Y, Li H Z, et al. Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization [J]. Journal of Materials Chemistry, 2012, 22, 24081
[33] Fang M. Preparation and properties of graphene-based nanocomposites [D]. Shanghai: Fudan University, 2011
[33] 方 明. 石墨烯基纳米复合材料的制备及性能 [D]. 上海: 复旦大学, 2011
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.