|
|
碳纳米管对水泥基材料热膨胀性能的影响 |
张淑文,张杰( ),王贵春,高丹盈 |
郑州大学土木工程学院 郑州 450001 |
|
Effect of Carbon Nanotubes on Thermal Expansion Properties of Cement-based Materials |
Shuwen ZHANG,Jie ZHANG( ),Guichun WANG,Danying GAO |
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China |
引用本文:
张淑文,张杰,王贵春,高丹盈. 碳纳米管对水泥基材料热膨胀性能的影响[J]. 材料研究学报, 2019, 33(5): 387-393.
Shuwen ZHANG,
Jie ZHANG,
Guichun WANG,
Danying GAO.
Effect of Carbon Nanotubes on Thermal Expansion Properties of Cement-based Materials[J]. Chinese Journal of Materials Research, 2019, 33(5): 387-393.
[1] | JinW L, ZhongX P. Relationship of structural durability with structural safety and serviceability in whole life-cycle [J]. J. Build. Struct., 2009, 30(6): 1 | [1] | 金伟良, 钟小平. 结构全寿命的耐久性与安全性、适用性的关系 [J]. 建筑结构学报, 2009, 30(6): 1) | [2] | FuY F, WongY L, TangC A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures-Part I: Thermal cracking around single inclusion [J]. Cem. Concr. Compos., 2004, 26: 99 | [3] | FanJ, XiongG J, LiG Y. Progress in research and development of carbon nanotubes-reinforced cement-based composite materials [J]. Mater. Rev., 2014, 28(11): 142 | [3] | 范 杰, 熊光晶, 李庚英. 碳纳米管水泥基复合材料的研究进展及其发展趋势 [J]. 材料导报, 2014, 28(11): 142) | [4] | JabeenS, KausarA, MuhammadB, et al. A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: Structure, preparation and properties [J]. Polym.-Plast. Technol. Eng., 2015, 54: 1379 | [5] | YanH, RanQ P, ShuX, et al. Research advances on performance optimization of cementitious materials using nanomaterials [J]. Mater. China, 2017, 36: 645 | [5] | 严 涵, 冉千平, 舒 鑫等. 纳米材料优化水泥基材料性能的研究进展 [J]. 中国材料进展, 2017, 36: 645 | [6] | XuS L, LiuJ T, LiQ H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste [J]. Constr. Build. Mater., 2015, 76: 16 | [7] | KashaniA, NgoT D, WalkleyB, et al. Thermal performance of calcium-rich alkali-activated materials: A microstructural and mechanical study [J]. Constr. Build. Mater., 2017, 153: 225 | [8] | LiQ H, YaoY, SunB. Investigation on behavior of slag to thermal expansion of cement [J]. Concrete, 2009, (1): 84 | [8] | 李清海, 姚 燕, 孙 蓓. 磨细矿渣对水泥基材料热膨胀性能影响的研究 [J]. 混凝土, 2009, (1): 84) | [9] | TangQ L, HuangJ, TianG X. Dispersion of carbon nanotubes and research progress on mechanical properties of carbon nanotubes cement-based composites [J]. J. Funct. Mater., 2017, 48: 6042 | [9] | 唐倩兰, 黄 俊, 田国鑫. 碳纳米管分散性及其水泥基复合材料力学性能的研究进展 [J]. 功能材料, 2017, 48: 6042 | [10] | PangZ P, SunX G, ChengX Y, et al. Effect of carbon nanotube content on electromagnetic interference shielding performance of carbon nanotube-cellulose composites materials [J]. Chin. J. Mater. Res., 2015, 29(8): 583 | [10] | 庞志鹏, 孙晓刚, 程晓圆等. 碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响 [J]. 材料研究学报, 2015, 29(8): 583) | [11] | GaoX, WeiY, HuangW. Phase identification in cement paste by modulus mapping [J]. Chin. J. Mater. Res., 2016, 30(5): 321 | [11] | 高 翔, 魏 亚, 黄 卫. 基于动态模量成像的硬化水泥浆体微观物相的识别 [J]. 材料研究学报, 2016, 30(5): 321) | [12] | Petru?evskiG, AcevskaJ, StefkovG, et al. Characterization and origin differentiation of morphine derivatives by DSC/TG and FTIR analysis using pattern recognition techniques [J]. J. Therm. Anal. Calorim., 2016, 123: 2561 | [13] | ZhangN, ZhangT, LiaoJ, et al. Effect of pore solution freezing on thermal strain of water-saturated cement based material at low temperature by differential scanning calorimetry [J]. J. Chin. Ceram. Soc., 2015, 43: 599 | [13] | 张 楠, 张 涛, 廖 娟等. 利用差示扫描量热法研究孔溶液结冰对水饱和水泥基材料低温热形变的影响 [J]. 硅酸盐学报, 2015, 43: 599 | [14] | ReddyG K, YarakkulaK. Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 263: 032003 | [15] | GaoY, De SchutterG, YeG, et al. A microscopic study on ternary blended cement based composites [J]. Constr. Build. Mater., 2013, 46: 28 | [16] | GatelyR D, Marc in het Panhuis. Filling of carbon nanotubes and nanofibres [J]. Beilstein J. Nanotechnol., 2015, 6: 508 | [17] | XiaoH J, SunW, JiangJ Y, et al. Characterization of microstructure of cement-based materials by multi-cycle-MIP method [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2013, 43: 371 | [17] | 肖海军, 孙 伟, 蒋金洋等. 水泥基材料微结构的反复压汞法表征 [J]. 东南大学学报(自然科学版), 2013, 43: 371 | [18] | DingQ J, HeZ. Advances in research on the formation mechanism of cementitious paste microstructure in current concrete [J]. Mater. China, 2009, 28(11): 8 | [18] | 丁庆军, 何 真. 现代混凝土胶凝浆体微结构形成机理研究进展 [J]. 中国材料进展, 2009, 28(11): 8) | [19] | LvS H, ZhangJ, LuoX Q, et al. Microstructure and properties for composites of graphene oxide/cement [J]. Chin. J. Mater. Res., 2018, 32(3): 233 | [19] | 吕生华, 张 佳, 罗潇倩等. 氧化石墨烯/水泥基复合材料的微观结构和性能 [J]. 材料研究学报, 2018, 32(3): 233) | [20] | HonorioT, BaryB, BenboudjemaF. Thermal properties of cement-based materials: Multiscale estimations at early-age [J]. Cem. Concr. Compos., 2018, 87: 205 | [21] | WangH T, WebbT, BitlerJ W. Study of thermal expansion and thermal conductivity of cemented WC-Co composite [J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 170 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|