Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 161-169    DOI: 10.11901/1005.3093.2018.509
  本期目录 | 过刊浏览 |
热等静压温度和粉末粒度对Ti2AlNb合金组织与性能的影响
刘巧沐1,吴杰2,陈玉龙1,陈乾明1,裴会平1,徐磊2()
1. 中国航发四川燃气涡轮研究院 成都 610500
2. 中国科学院金属研究所 沈阳 110016
Effect of Temperature and Powder Particle Size on Mechanical Properties and Microstructure of PM Ti2AlNb Alloy Prepared via Hot Isostatic Pressing
Qiaomu LIU1,Jie WU2,Yulong CHEN1,Qianming CHEN1,Huiping PEI1,Lei XU2()
1. AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘巧沐,吴杰,陈玉龙,陈乾明,裴会平,徐磊. 热等静压温度和粉末粒度对Ti2AlNb合金组织与性能的影响[J]. 材料研究学报, 2019, 33(3): 161-169.
Qiaomu LIU, Jie WU, Yulong CHEN, Qianming CHEN, Huiping PEI, Lei XU. Effect of Temperature and Powder Particle Size on Mechanical Properties and Microstructure of PM Ti2AlNb Alloy Prepared via Hot Isostatic Pressing[J]. Chinese Journal of Materials Research, 2019, 33(3): 161-169.

全文: PDF(5617 KB)   HTML
摘要: 

采用无坩埚感应熔炼超声气体雾化法制备了成分为Ti-22Al-24Nb-0.5Mo(原子分数, %)的预合金粉末,通过预合金粉末热等静压工艺制备了Ti2AlNb粉末冶金合金。研究结果表明,热等静压温度显著影响Ti2AlNb粉末冶金合金的显微组织,需严格控制。为了对比研究,选取了平均粒度分别为70 μm和200 μm的两种Ti2AlNb预合金粉末,制备坯料并测试性能,探讨了粉末粒度的选取原则,分析了粉末粒度对Ti2AlNb粉末冶金合金显微组织和力学性能的影响。研究结果表明,粉末粒度对合金室温拉伸强度无显著影响,但会对高温拉伸强度和高温持久寿命产生显著影响,由粗粉(平均粒度200 μm)制成的合金高温持久寿命较细粉(平均粒度70 μm)的降低大约40%。

关键词 金属材料热等静压工艺粉末粒度Ti2AlNb合金力学性能    
Abstract

Pre-alloyed powder of Ti-22Al-24Nb-0.5Mo (atomic fraction, %) was prepared via a two step process, i.e. electrode no crucible induction melting and then gas atomization process. Powder metallurgy (PM) Ti2AlNb alloys was prepared through a typical hot isostatic pressing (HIPing) route. Two pre-alloyed powders with average particle sizes of 70 and 200 μm respectively were prepared and adopted to prepare PM alloys tested for comparison. The results showed that the powder particle size had no significant effect on the tensile strength at room temperature, but a significant effect on the tensile strength and rupture life time at elevated temperature. It showed that the rupture lifetime of PM Ti2AlNb alloys made of the coarser powders was about 40% less than that of the finer powders.

Key wordsmetallic materials    hot isostatic pressing    powder particle size    Ti2AlNb    mechanical properties
收稿日期: 2018-08-15     
ZTFLH:  TG146.2  
作者简介: 刘巧沐,男,1984年生,博士
Batch numberAlNbMoONHArTi
I10.438.60.900.0650.0080.0025< 0.0005Bal.
II10.540.60.900.0660.0050.0024< 0.0005Bal.
III10.240.70.900.0650.0070.0015< 0.0005Bal.
IV10.540.90.900.0860.0120.0045< 0.0005Bal.
V10.540.60.910.0890.0100.0050< 0.0005Bal.
表1  Ti2AlNb预合金粉末的化学成分 (质量分数,%)
图1  Ti2AlNb预合金粉末的独立粒度分布图
图2  Ti2AlNb预合金粉末颗粒表面形貌
图3  Ti2AlNb预合金粉末XRD谱
图4  不同热等静压温度下的粉末Ti2AlNb合金经浸蚀后的显微组织
图5  粉末Ti2AlNb合金显微组织
图6  不同热等静压温度所得Ti2AlNb粉末冶金合金的拉伸性能和高温持久寿命 (平均粒度D50为100 μm)
图7  两种制粉工艺制备的Ti2AlNb粉末的粒度分布
Temperature /℃UTS/MPaEI./%L/h
D50=70 μm2010298.0103
65073114.0
D50=200 μm209916.065
65070616.0
D50=100 μm with typical process2010408.5110
65080015.0
表2  两种制粉工艺制备的Ti2AlNb粉末冶金合金拉伸性能和持久寿命
图8  经1030℃/140 MPa/3 h热等静压的Ti2AlNb粉末冶金合金孔隙分布
图9  Ti2AlNb粉末冶金合金复杂构件
[1] BanerjeeD, GogiaA K, NandiT K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Materialia, 1988, 36(4): 871
[2] GermannL, BanerjeeD, GuédouJ Y, et al. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide [J]. Intermetallics, 2005, 13 (9): 920
[3] BanerjeeD. The intermetallic Ti2AlNb [J]. Progress in Materials Science, 1997, 42 (1-4): 135
[4] ShenJ, FengA H . Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metallurgica Sinica, 2013, 49 (11):1286
[4] (沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49(11): 1286)
[5] WangY. The study on alloying, hot deformation behaviors and mechanical properties of Ti2AlNb based alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
[5] (王 永. Ti2AlNb基合金的合金化、热加工及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[6] LuZ G, WuJ, XuL, et al. Comparative study on hot workability of powder metallurgy Ti-22Al-24Nb-0.5Mo alloy [J]. Chinese Journal of Materials Research, 2015, 29 (6):445
[6] (卢正冠, 吴 杰, 徐磊等. 粉末 Ti-22Al-24Nb-0.5Mo 合金热变形能力的对比研究 [J]. 材料研究学报, 2015, 29(6): 445)
[7] WuJ, XuL, LuB, et al. Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime [J]. Chinese Journal of Materials Research, 2014, 28(5): 387
[7] 吴 杰, 徐 磊, 卢 斌等. 粉末冶金Ti2AlNb合金的制备及持久寿命 [J]. 材料研究学报, 2014, 28(5): 387)
[8] WuJ, XuL, LuZ G, et al. Microstructure design and heat response of powder metallurgy Ti2AlNb alloys [J]. Journal of Materials Science & Technology, 2015, 31(12): 1251
[9] SamarovV, SeliverstovD, FroesFH. In Titanium powder metallurgy [M]. Oxford: Butterworth-Heinemann, 2015
[10] YangR. Advances and challenges of TiAl base alloys [J]. Acta Metallurgica Sinica, 2015, 51 (2): 129
[10] (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51(2): 129)
[11] XuL, WuJ, CuiY Y, et al. Effect of powder pre-treatment on the mechanical properties of powder metallurgy Ti-47Al-2Cr-2Nb-0.15B [A]. Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology [C]. Hoboken, Wiley, 2014
[12] WuJ, XuL, LuZ G, et al. Preparation and electron beam welding of HIP powder metallurgy Ti-22Al-24Nb-0.5Mo alloys [J]. Rare Metal Materials and Engineering, 2017, 46(S1): 241
[12] (吴 杰, 徐 磊, 卢正冠等. 热等静压粉末Ti2AlNb合金的制备及电子束焊 [J]. 稀有金属材料与工程, 2017, 46(S1): 241)
[13] WegmannG, GerlingR, SchimanskyF P. Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders [J]. Acta Materialia, 2003, 51(3): 741
[14] EylonD, SchwenkerS W, FroesF H. Thermally induced porosity in Ti-6Al-4V prealloyed powder compacts [J]. Metallurgical Transactions A, 1985, 16(8): 1526
[15] XuL, GuoR P, BaiC G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder [J]. Journal of Materials Science & Technology, 2014, 30(12): 1289
[16] ChengW X. Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders during HIPing [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013
[16] (程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[17] WuJ, GuoR P, XuL, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. Journal of Materials Science & Technology, 2017, 33(2): 172
[18] LuZ G, WuJ, GuoR P, et al. Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 621
[19] BoehlertC J, MajumdarB S, SeetharamanV, et al. Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metallurgical & Materials Transactions A, 1999, 30(9): 2305
[20] BoehlertC J, MiracleD B. Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metallurgical & Materials Transactions A, 1999, 30(9): 2349
[21] BoehlertC J. Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metallurgical & Materials Transactions A, 2001, 32(8): 1977
[22] QuastJ P, BoehlertC J. Comparison of the microstructure, tensile, and creep behavior for Ti-24Al-17Nb-0.66Mo (atomic percent) and Ti-24Al-17Nb-2.3Mo (atomic percent) alloys [J]. Metallurgical & Materials Transactions A, 2007, 38(3): 529
[23] BoehlertC J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy [J]. Journal of Phase Equilibria, 1999, 20(2): 101
[24] ChenW, LiJ W, XuL, et al. Development of Ti2AlNb alloys: opportunities and challenges [J]. Advanced Materials & Processes, 2014, 172(5): 23
[25] EmuraS, AraokaA, HagiwaraM. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy [J]. Scripta Materialia, 2003, 48(5): 629
[26] XuL, GuoR P, WuJ, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metallurgica Sinica, 2018, 54(11): 1537
[27] GuoR P, XuL, WuJ, et al. Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response [J]. Materials Science & Engineering A, 2015, 639: 327
[28] GuoR P, XuL, ZongB Y, et al. Preparation and ring rolling processing of large size Ti-6Al-4V powder compact [J]. Materials & Design, 2016, 99: 341
[29] GuoR P, XuL, ZongYP, et al. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts [J]. Acta Metallurgica Sinica(English Letters), 2017, 30(8): 735
[30] ChengW X, XuL, LeiJ F, et al. Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder [J].The Chinese Journal of Nonferrous Metals, 2013, 23 (2): 362
[30] (程文祥, 徐 磊, 雷家峰等. 粉末粒度偏析对 Ti-5Al-2.5Sn ELI 粉末合金拉伸性能的影响 [J].中国有色金属学报, 2013, 23 (2): 362)
[31] WangS G, WangS C, ZhengL. Application of high resolution transmission X-ray tomography in material science [J]. Acta Metallurgica Sinica, 2013, 49(8): 897
[31] (王绍钢, 王苏程, 张 磊. 高分辨透射X射线三维成像在材料科学中的应用 [J]. 金属学报, 2013, 49(8): 897)
[32] JiangH, ZhangK, Garcia-PastorF A, et al. Microstructure and properties of hot isostatically pressed powder and extruded Ti25-V15Cr2Al0.2C [J]. Materials Science and Technology, 2011, 27(8): 1241
[33] LiW B, AshbyM F, EasterlingK E. On densification and shape change during hot isostatic pressing [J]. Acta Metallurgica, 1987, 35(12): 2831
[34] LiW B, EasterlingK E. Cause and effect of non-uniform densification during hot isostatic pressing [J]. Powder Metallurgy, 1992, 35(1): 47
[35] GuoR P, ZhangJ, XuL, et al. Mechanical properties of Ti-5Al-2.5Sn ELI powder compacts [J]. Chinese Journal of Materials Research, 2018, 32(5): 333
[35] (郭瑞鹏, 张 静, 徐 磊等. Ti-5Al-2.5Sn ELI粉末合金的力学性能 [J]. 材料研究学报, 2018, 32(5): 333)
[36] XuL, GuoR P, LiuY Y. Cost analysis of titanium alloy parts through neat-net-shape hot isostatic pressing [J]. Titanium Industry Progress, 2014, 31(6): 1
[36] (徐 磊, 郭瑞鹏, 刘羽寅. 钛合金粉末热等静压近净成形成本分析 [J]. 钛工业进展, 2014, 31(6): 1)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.