Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 371-378    DOI: 10.11901/1005.3093.2018.429
  研究论文 本期目录 | 过刊浏览 |
预嵌锂多壁碳纳米管的性能
陈玮1,聂艳艳2,孙晓刚1,2(),李旭1,王杰1,胡浩1,梁国东1,黄雅盼1,魏成成1
1. 南昌大学机电工程学院 南昌 330031
2. 江西克莱威纳米碳材料有限公司 南昌 330052
Performance of Lithium-ion Capacitors Using Pre-lithiated Multi-walled Carbon Nanotube Composite Anode
Wei CHEN1,Yanyan NIE2,Xiaogang SUN1,2(),Xu LI1,Jie WANG1,Hao HU1,Guodong LIANG1,Yapan HUANG1,Chengcheng WEI1
1. Mechanical and Electronic Engineering School, Nanchang University, Nanchang 330031, China
2. Jiangxi Kelaiwei Carbon Nano Co Ltd, Nanchang 330052, China
引用本文:

陈玮,聂艳艳,孙晓刚,李旭,王杰,胡浩,梁国东,黄雅盼,魏成成. 预嵌锂多壁碳纳米管的性能[J]. 材料研究学报, 2019, 33(5): 371-378.
Wei CHEN, Yanyan NIE, Xiaogang SUN, Xu LI, Jie WANG, Hao HU, Guodong LIANG, Yapan HUANG, Chengcheng WEI. Performance of Lithium-ion Capacitors Using Pre-lithiated Multi-walled Carbon Nanotube Composite Anode[J]. Chinese Journal of Materials Research, 2019, 33(5): 371-378.

全文: PDF(6646 KB)   HTML
摘要: 

使用稳定锂金属粉末(SLMP)/多壁碳纳米管(MWCNTs)作为负极、以活性炭(AC)作为正极组装锂离子电容器,研究其电化学性能。根据恒流充放电(GCD)和交流阻抗谱(EIS)研究了预嵌锂前后锂离子电容器的电化学性能。结果表明,嵌入适量的SLMP可消除碳纳米管大部分固有的不可逆容量并提高电容器的电化学性能。这种电容器具有较高的能量密度、功率密度和优异的循环性能。电流密度为0.05 A/g时预嵌锂碳纳米管锂离子电容器的比电容达到85.18 F/g,电流密度为0.05~4 A/g时最大能量密度和最大功率密度分别为140.4 Wh/kg和5.25 KW/kg,经过3000次循环后容量保持率仍约为82%。

关键词 复合材料预嵌锂多壁碳纳米管内部短路稳定锂金属粉末锂离子电容器    
Abstract

The electrochemical performance of lithium-ion capacitors with stabilized lithium metal powder/multi-walled carbon nanotubes composite as anode and activated carbon as cathode was investigated by means of galvanostatic charge/discharge (GCD) tests and electrochemical impedance spectroscopy (EIS). The results show that the introduction of stabilized lithium metal powder can eliminate the majority of the inherent irreversible capacity of carbon nanotubes and greatly improve the electrochemical performance of lithium-ion capacitors. The lithium-ion capacitors have a specific capacitance of 85.18 F/g at the current density of 0.05 A/g. The maximum energy density and power density reached 140.4 Wh/kg and 5.25 KW/kg respectively in the current range of 0.05~4 A/g. The continuous galvanostatic charge-discharge cycling tests revealed that the lithium-ion capacitors could maintain 82% of the capacity after 3000 cycles. In sum, the lithium-ion capacitors showed an excellent cycle performance with high energy and power density.

Key wordscomposites    pre-lithiated multi-walled carbon nanotubes    internal short    stabilized lithium metal powder    lithium-ion capacitors
收稿日期: 2018-07-03     
ZTFLH:  TM53,O646  
基金资助:江西省科技厅(20142BBE50071);江西省教育厅(KJLD13006)
作者简介: 陈 玮,男,1994年生,硕士
图1  锂离子电容器的内部结构示意图
图2  SLMP的微观形貌
图3  碳纳米管预嵌锂前后的首次充放电曲线和充放电容量电压微分曲线
图4  预嵌锂前后的多壁碳纳米管复合电极的微观形貌
图5  预嵌锂前后碳纳米管负极超级电容器恒流充放电曲线、比容量和电流密度关系曲线与能量密度和功率密度的关系

Current density

mA·g-1

PrimitivePre-lithiated

CSP

F·g-1

ESP

Wh·kg-1

PSP

W·kg-1

CSP

F·g-1

ESP

Wh·kg-1

PSP

W·kg-1

5010.7417.5374.6185.18140.4074.70
1008.6613.86148.5175.91123.81149.02
2007.2811.30294.7773.32117.00296.42
5005.707.99719.1469.90104.29729.04
10005.236.141382.361.2681.171417.9
2000---54.6967.442790.6
3000---41.3343.924054.5
4000---34.9132.095250.7
表1  锂离子电容器在不同电流密度下的功率密度和能量密度以及比电容数据
图6  预嵌锂前后的碳纳米管负极锂离子电容器的循环性能
图7  3000次循环测试前后的电化学交流阻抗谱图
SampleRSSEI layersCharge transfer
RSEICSEI/FRctCd1/F
AC/CNT before6.83--107.089×10-4

AC/CNT after

AC/CNT+SLMP before

AC/CNT+SLMP after

17.38

4.40

6.08

167.3

-

18.31

1.8×10-4

-

3.8×10-4

33.01

53.26

31.37

1.6×10-3

3.8×10-4

1.1×10-2

表2  锂离子电容器3000次循环前后的拟合参数
图8  循环前后的多壁碳纳米管复合电极的形貌
[1] LiuM, ZhangL, HanP, et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors [J]. Part. Part. Syst. Charact., 2016, 32(11): 1006
[2] WangH, ZhangY, AngH, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode [J]. Adv. Funct. Mater., 2016, 26(18): 3082
[3] HosseinzadehE, GenieserR, WorwoodD, et al. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application [J]. J. Power Sources, 2018, 382: 77
[4] HaoZ Q, CaoJ P, WuY, et al. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor [J]. J. Power Sources, 2017, 361: 249
[5] DuH, YangH, HuangC, et al. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities [J]. Nano Energy, 2016, 22: 615
[6] SunX, ZhangX, LiuW, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor [J]. Electrochim. Acta, 2017, 235
[7] ZhangJ, WangJ, ShiZ Q. Research progress of carbon-based lithium ion capacitor [J]. Energy Storage Sci. Technol., 2016, 5(6): 807
[7] 张 进, 王 静, 时志强. 炭基锂离子电容器的研究进展 [J]. 储能科学与技术, 2016, 5(6): 807)
[8] RenJ J, SuL W, QinX, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density [J]. J. Power Sources, 2014, 264(264): 108
[9] FanK, TianY, ZhangX, et al. Application of stabilized lithium metal powder and hard carbon in anode of lithium-sulfur battery [J]. J. Electroanal. Chem., 2016, 760: 80
[10] ZhangS H, ChiC X, ZhangS W. New progress on prelithiation in Li-ion batteries [J]. Chinese Journal of Power Sources, 2015, 39(7): 1543
[10] 张双虎, 迟彩霞, 张盛武. 锂离子电池预嵌锂技术的最新研究进展 [J]. 电源技术, 2015, 39(7): 1543)
[11] JinZ, LiuX, JingW, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors [J]. Electrochim. Acta, 2016, 187: 134
[12] YuanM, LiuW, ZhuY, et al. Electrochemical performance of pre-lithiated graphite as negative electrode in lithium-ion capacitors [J]. Russ. J. Electrochem., 2014, 50(11): 1050
[13] SivakkumarS R, PandolfoA G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode [J]. Electrochim. Acta, 2012, 65: 280
[14] GaoX, ZhanC, YuX, et al. A high performance lithium-ion capacitor with both electrodes prepared from sri lanka graphite ore [J]. Materials, 2017, 10(4)
[15] BarcellonaS, CiccarelliF, IannuzziD, et al. Overview of lithium-ion capacitor applications based on experimental performances [J]. Electric Machines & Power Systems, 2016, 44(11): 1248
[16] JayasingheR, ThapaA K, DharmasenaR R, et al. Optimization of multi-walled carbon nanotube based CFx, electrodes for improved primary and secondary battery performances [J]. J. Power Sources, 2014, 253(5): 404
[17] HoweJ Y, BoatnerL A, KolopusJ A, et al. Vacuum-tight sample transfer stage for a scanning electron microscopic study of stabilized lithium metal particles [J]. J. Mater. Sci., 2012, 47(3): 1572
[18] AiG, WangZ, ZhaoH, et al. Scalable process for application of stabilized lithium metal powder inLi-ion batteries [J]. J. Power Sources, 2016, 309: 33
[19] KimM, XuF, JinH L, et al. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors [J]. J. Mater. Chem. A, 2014, 2(26): 10029
[20] JarvisC R, LainM J, GaoY, et al. A lithium ion cell containing a non-lithiated cathode [J]. J. Power Sources, 2005, 146(1-2): 331
[21] PingL N, ZhengJ M, ShiZ Q, et al. Electrochemical Performance of Lithium Ion Capacitors Using Li+-Intercalated Mesocarbon Microbeads as the Negative Electrode [J]. Acta Phys.Chim. Sin., 2012, 28(7): 1733
[21] 平丽娜, 郑嘉明, 时志强等. 以预嵌锂中间相碳微球为负极的锂离子电容器的电化学性能 [J]. 物理化学学报, 2012, 28(7): 1733)
[22] ZhangJ, ShiZ, WangJ, et al. Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance [J]. J. Electroanal. Chem., 2015, 747: 20
[23] TaoH, MukoyamaD, NaraH, et al. Electrochemical impedance spectroscopy analysisfor lithium-ion battery using Li4Ti5O12 anode [J]. J. Power Sources, 2013, 222(2): 442
[24] DokkoK, FujitaY, MohamediM, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon [J]. Electrochim. Acta, 2003, 47(6): 933
[25] R.K?tz , M.Carlen . Principles and applications of electrochemical capacitors [J]. Electrochim. Acta, 2000, 45(15): 2483
[26] CaoW J, ZhengJ P. The effect of cathode and anode potentials on the cycling performance of Li-ion capacitors [J]. Journal of the Electrochemical Society, 2013, 160(9): A1572
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.