|
|
预嵌锂多壁碳纳米管的性能 |
陈玮1,聂艳艳2,孙晓刚1,2( ),李旭1,王杰1,胡浩1,梁国东1,黄雅盼1,魏成成1 |
1. 南昌大学机电工程学院 南昌 330031 2. 江西克莱威纳米碳材料有限公司 南昌 330052 |
|
Performance of Lithium-ion Capacitors Using Pre-lithiated Multi-walled Carbon Nanotube Composite Anode |
Wei CHEN1,Yanyan NIE2,Xiaogang SUN1,2( ),Xu LI1,Jie WANG1,Hao HU1,Guodong LIANG1,Yapan HUANG1,Chengcheng WEI1 |
1. Mechanical and Electronic Engineering School, Nanchang University, Nanchang 330031, China 2. Jiangxi Kelaiwei Carbon Nano Co Ltd, Nanchang 330052, China |
引用本文:
陈玮,聂艳艳,孙晓刚,李旭,王杰,胡浩,梁国东,黄雅盼,魏成成. 预嵌锂多壁碳纳米管的性能[J]. 材料研究学报, 2019, 33(5): 371-378.
Wei CHEN,
Yanyan NIE,
Xiaogang SUN,
Xu LI,
Jie WANG,
Hao HU,
Guodong LIANG,
Yapan HUANG,
Chengcheng WEI.
Performance of Lithium-ion Capacitors Using Pre-lithiated Multi-walled Carbon Nanotube Composite Anode[J]. Chinese Journal of Materials Research, 2019, 33(5): 371-378.
[1] | LiuM, ZhangL, HanP, et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors [J]. Part. Part. Syst. Charact., 2016, 32(11): 1006 | [2] | WangH, ZhangY, AngH, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode [J]. Adv. Funct. Mater., 2016, 26(18): 3082 | [3] | HosseinzadehE, GenieserR, WorwoodD, et al. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application [J]. J. Power Sources, 2018, 382: 77 | [4] | HaoZ Q, CaoJ P, WuY, et al. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor [J]. J. Power Sources, 2017, 361: 249 | [5] | DuH, YangH, HuangC, et al. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities [J]. Nano Energy, 2016, 22: 615 | [6] | SunX, ZhangX, LiuW, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor [J]. Electrochim. Acta, 2017, 235 | [7] | ZhangJ, WangJ, ShiZ Q. Research progress of carbon-based lithium ion capacitor [J]. Energy Storage Sci. Technol., 2016, 5(6): 807 | [7] | 张 进, 王 静, 时志强. 炭基锂离子电容器的研究进展 [J]. 储能科学与技术, 2016, 5(6): 807) | [8] | RenJ J, SuL W, QinX, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density [J]. J. Power Sources, 2014, 264(264): 108 | [9] | FanK, TianY, ZhangX, et al. Application of stabilized lithium metal powder and hard carbon in anode of lithium-sulfur battery [J]. J. Electroanal. Chem., 2016, 760: 80 | [10] | ZhangS H, ChiC X, ZhangS W. New progress on prelithiation in Li-ion batteries [J]. Chinese Journal of Power Sources, 2015, 39(7): 1543 | [10] | 张双虎, 迟彩霞, 张盛武. 锂离子电池预嵌锂技术的最新研究进展 [J]. 电源技术, 2015, 39(7): 1543) | [11] | JinZ, LiuX, JingW, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors [J]. Electrochim. Acta, 2016, 187: 134 | [12] | YuanM, LiuW, ZhuY, et al. Electrochemical performance of pre-lithiated graphite as negative electrode in lithium-ion capacitors [J]. Russ. J. Electrochem., 2014, 50(11): 1050 | [13] | SivakkumarS R, PandolfoA G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode [J]. Electrochim. Acta, 2012, 65: 280 | [14] | GaoX, ZhanC, YuX, et al. A high performance lithium-ion capacitor with both electrodes prepared from sri lanka graphite ore [J]. Materials, 2017, 10(4) | [15] | BarcellonaS, CiccarelliF, IannuzziD, et al. Overview of lithium-ion capacitor applications based on experimental performances [J]. Electric Machines & Power Systems, 2016, 44(11): 1248 | [16] | JayasingheR, ThapaA K, DharmasenaR R, et al. Optimization of multi-walled carbon nanotube based CFx, electrodes for improved primary and secondary battery performances [J]. J. Power Sources, 2014, 253(5): 404 | [17] | HoweJ Y, BoatnerL A, KolopusJ A, et al. Vacuum-tight sample transfer stage for a scanning electron microscopic study of stabilized lithium metal particles [J]. J. Mater. Sci., 2012, 47(3): 1572 | [18] | AiG, WangZ, ZhaoH, et al. Scalable process for application of stabilized lithium metal powder inLi-ion batteries [J]. J. Power Sources, 2016, 309: 33 | [19] | KimM, XuF, JinH L, et al. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors [J]. J. Mater. Chem. A, 2014, 2(26): 10029 | [20] | JarvisC R, LainM J, GaoY, et al. A lithium ion cell containing a non-lithiated cathode [J]. J. Power Sources, 2005, 146(1-2): 331 | [21] | PingL N, ZhengJ M, ShiZ Q, et al. Electrochemical Performance of Lithium Ion Capacitors Using Li+-Intercalated Mesocarbon Microbeads as the Negative Electrode [J]. Acta Phys.Chim. Sin., 2012, 28(7): 1733 | [21] | 平丽娜, 郑嘉明, 时志强等. 以预嵌锂中间相碳微球为负极的锂离子电容器的电化学性能 [J]. 物理化学学报, 2012, 28(7): 1733) | [22] | ZhangJ, ShiZ, WangJ, et al. Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance [J]. J. Electroanal. Chem., 2015, 747: 20 | [23] | TaoH, MukoyamaD, NaraH, et al. Electrochemical impedance spectroscopy analysisfor lithium-ion battery using Li4Ti5O12 anode [J]. J. Power Sources, 2013, 222(2): 442 | [24] | DokkoK, FujitaY, MohamediM, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon [J]. Electrochim. Acta, 2003, 47(6): 933 | [25] | R.K?tz , M.Carlen . Principles and applications of electrochemical capacitors [J]. Electrochim. Acta, 2000, 45(15): 2483 | [26] | CaoW J, ZhengJ P. The effect of cathode and anode potentials on the cycling performance of Li-ion capacitors [J]. Journal of the Electrochemical Society, 2013, 160(9): A1572 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|