|
|
淬火工艺对UHS海工钢力学性能的影响 |
李振团, 柴锋( ), 杨才福, 罗小兵, 杨丽, 苏航 |
钢铁研究总院 工程用钢研究所 北京 100081 |
|
Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel |
Zhentuan LI, Feng CHAI( ), Caifu YANG, Xiaobing LUO, Li YANG, Hang SU |
(Division of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China) |
引用本文:
李振团, 柴锋, 杨才福, 罗小兵, 杨丽, 苏航. 淬火工艺对UHS海工钢力学性能的影响[J]. 材料研究学报, 2018, 32(12): 889-897.
Zhentuan LI,
Feng CHAI,
Caifu YANG,
Xiaobing LUO,
Li YANG,
Hang SU.
Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel[J]. Chinese Journal of Materials Research, 2018, 32(12): 889-897.
[1] | Lei X W, Huang J H, Chen S H, et al.Current status and trend of ultra-high strength hull structural steels[J]. Mater. Sci. Technol., 2015, 23(4): 7(雷玄威, 黄继华, 陈树海等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4): 7) | [2] | Gao Z Y, Pan T, Wang Z, et al.Composition optimization design of boron-microalloying ultra-heavy plate steel with high hardenability[J]. Chin. J. Eng., 2015, 37: 447(高志玉, 潘涛, 王卓等. 高淬透性硼微合金化特厚板钢成分优化设计[J]. 工程科学学报, 2015, 37: 447) | [3] | Wang C J, Liang J X, Liu Z B, et al.Effect of metastable austenite on mechanical property and Mechanism in cryogenic steel applied in oceaneering[J]. Acta Metall. Sin., 2016, 52: 385(王长军, 梁剑雄, 刘振宝等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52: 385) | [4] | Iorio L E, Garrison W M Jr. The effects of titanium additions on AF1410 ultra-high-strength steel[J]. Metall. Mater. Trans., 2006, 37A: 1165 | [5] | Manigandan K, Srivatsan T S, Tammana D, et al.Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100[J]. Mater. Sci. Eng., 2014, 601A: 29 | [6] | Mujahid M, Lis A K, Garcia C I, et al. HSLA-100 steels: Mcrostructure and properties [J]. Key Eng. Mater., 1993, 84-85: 209 | [7] | Hou J P, Pan T, Zhu Y G, et al.Effect of inter-critical quenching process on mechanical property and microstructure of 9Ni cryogenic steel[J]. Trans. Mater. Heat Treat., 2014, 35(10): 88(侯家平, 潘涛, 朱莹光等. 临界淬火工艺对9Ni低温钢力学性能及精细组织的影响[J]. 材料热处理学报, 2014, 35(10): 88) | [8] | Song P C, Liu W B, Liu L, et al.Austenite growth behavior of Fe-13Cr-5Ni martensitic stainless steel under continuous heating[J]. Chin. J. Eng., 2017, 39: 68(宋鹏程, 柳文波, 刘璐等. Fe-13Cr-5Ni马氏体不锈钢在连续加热过程中两相区的奥氏体生长行为[J]. 工程科学学报, 2017, 39: 68) | [9] | Yong Q L.Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006) | [10] | Dere E G, Sharma H, Petrov R H, et al.Effect of niobium and grain boundary density on the fire resistance of Fe-C-Mn steel[J]. Scr. Mater., 2013, 68: 651 | [11] | Morito S, Tanaka H, Konishi R, et al.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Mater., 2003, 51: 1789 | [12] | Wang C F, Wang M Q, Shi J, et al.Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scr. Mater., 2008, 58: 492 | [13] | Tong M W, Venkatsurya P K C, Zhou W H, et al. Structure-mechanical property relationship in a high strength microalloyed steel with low yield ratio: The effect of tempering temperature[J]. Mater. Sci. Eng., 2014, 609A: 209 | [14] | Shen J C, Luo Z J, Yang C F, et al.“Effective grain size” affecting low temperature toughness in lath structure of HSLA steel[J]. J. Iron Steel Res., 2014, 26(7): 70(沈俊昶, 罗志俊, 杨才福等. 低合金钢板条组织中影响低温韧性的“有效晶粒尺寸”[J]. 钢铁研究学报, 2014, 26(7): 70) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|