Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 225-231    DOI: 10.11901/1005.3093.2018.338
  本期目录 | 过刊浏览 |
铜在碳钢中扩散及其对碳钢耐腐蚀性的影响
马涛,李慧蓉,高建新,李运刚()
华北理工大学冶金与能源学院 唐山 063009
Diffusion Behavior of Cu in Carbon Steel and Its Influence on Corrosion Resistance of Carbon Steel
Tao MA,Huirong LI,Jianxin GAO,Yungang LI()
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063009, China
引用本文:

马涛,李慧蓉,高建新,李运刚. 铜在碳钢中扩散及其对碳钢耐腐蚀性的影响[J]. 材料研究学报, 2019, 33(3): 225-231.
Tao MA, Huirong LI, Jianxin GAO, Yungang LI. Diffusion Behavior of Cu in Carbon Steel and Its Influence on Corrosion Resistance of Carbon Steel[J]. Chinese Journal of Materials Research, 2019, 33(3): 225-231.

全文: PDF(3540 KB)   HTML
摘要: 

用水溶液电沉积法在碳钢表面电镀铜并进行高温扩散退火,用Den-Broeder法计算铜在碳钢中的扩散系数,研究了铜在碳钢中的扩散行为及其对碳钢耐腐蚀性的影响。结果表明,铜在碳钢中的扩散主要沿晶界进行,铜的扩散抑制了热处理过程中碳钢晶粒的长大。铜在碳钢中的扩散系数为1.11×10-16~3.03×10-11 cm2/s,扩散系数随着退火温度的提高而升高,随着铜浓度的提高而降低。铜在碳钢高温奥氏体区中扩散所需的激活能为126~167 kJ/mol,在高于低温铁素体+奥氏体混合区中激活能为90~108 kJ/mol。通过铜在碳钢中的扩散制备的Cu-Fe梯度材料,具有优良的耐腐蚀性。

关键词 金属材料Cu-Fe梯度材料扩散系数扩散激活能极化曲线    
Abstract

The copper coating was deposited on the surface of carbon steel by electroplating method, and then annealed at high temperature. The diffusion coefficient of Cu in carbon steel were calculated by the Den-Broeder method, while the influence of Cu-metalizing on the corrosion resistance of carbon steel was investigated. Results show that the inward diffusion of Cu is mainly along grain boundaries of the carbon steel, while the diffusion of Cu will inhibit the growth of grains of the steel during heat treatment. The diffusion coefficient of Cu in carbon steel limits between 1.11×10-16~3.03×10-11 cm2/s, which increases with the increasing annealing temperature and decreases with the increasing Cu-concentration of copper. The diffusion activation energy of copper Cu in the ferrite + austenite region of carbon steel is between 90~108 kJ / mol at low temperatures, and in the ferrite region of carbon steel at high temperatures is between 126~167 kJ/mol. Furthermore, a Cu-Fe gradient material on the carbon steel gennerated via Cu-inward diffusion has better corrosion resistance rather than the bare carbon steel in NaCl solution.

Key wordsmetallic materials    copper    Cu-Fe gradient material    diffusion coefficient    diffusion active energy    polarization curve
收稿日期: 2018-05-21     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金(51774142);国家自然科学基金(51474088);河北省自然科学基金(E2017209239);华北理工大学研究生创新项目(2018B21)
作者简介: 马 涛,男,1990年生,博士生
图1  在不同温度下退火扩散后界面的铜、铁含量的分布
图2  铜铁扩散偶在1050℃退火扩散后的金相显微组织
图3  在1050℃退火扩散后试样截面的SEM照片和EDS线扫描分析
图4  铜在碳钢中的扩散系数与铜浓度和退火温度的关系
图5  Fe-Cu合金的相图
图6  不同温度区间不同铜浓度条件下扩散系数与温度的关系
CCu/%, mass fraction5101520253035404550
α-Fe +γ-Fe90.21107.83108.48115.17109.15101.9394.82102.58100.02107.50
γ-Fe167.79157.25128.38126.86135.77139.12141.74141.7472.9233.48
表1  不同组织中不同Cu含量条件下的扩散激活能Q
图7  实验条件下Fe-C合金相图
SamplesEcorr/mVIcorr/μA·cm-2
Carbon steel-60091.7
Cu plated carbon steel-36062.5
Cu-Fe gradient material-35961.7
表2  3.5%NaCl溶液中碳钢、镀铜碳钢及Cu-Fe合金极化曲线拟合结果
[1] YuQ C, WangZ Y, WangC. Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition [J]. Acta Metall. Sin., 2010, 46: 1133
[1] (于全成, 王振尧, 汪 川. 表面沉积NaCl 和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为 [J]. 金属学报, 2010, 46: 1133)
[2] WangS T, YangS W, GaoK W, et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning [J]. Int. J. Miner. Metall. Mater., 2009, 16: 58
[3] MaY T, LiY, WangF H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci.,2009, 51: 99
[4] LiuR, ChenX P, WangX D, et al. Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment [J]. Hot Work. Technol., 2014, 43(20): 19
[4] (刘 芮, 陈小平, 王向东等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响 [J]. 热加工工艺, 2014, 43(20): 19)
[5] LiuL H, QiH B, LuY P, et al. A review on weathering steel research [J]. Corros. Sci. Prot. Technol., 2003, 15(2): 87
[5] (刘丽宏, 齐慧滨, 卢燕平等. 耐大气腐蚀钢的研究概况 [J]. 腐蚀科学与防护技术, 2003, 15(2): 87)
[6] MorcilloM, DiazI, ChicoB, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83(7): 6
[7] ChenX H, DongJ H, HanE H, et al. Effect of Cu-Mn on the corrosion performance of carbon steels in wet/dry environments [J]. Mater. Prot., 2007, 40(10): 19
[7] (陈新华, 董俊华, 韩恩厚等. 干湿交替环境下Cu、Mn合金化对低合金钢腐蚀行为的影响 [J]. 材料保护, 2007, 40(10): 19)
[8] YueL J, WangL M, HanJ S. Effects of rare earth on inclusions and corrosion resistance of 10PCuRE weathering steel [J]. J. Rare Earths, 2010, 28(6): 952
[9] ChenG Z, GordoE, FrayD J. Direct electrolytic preparation of chromium powder [J]. Metall. Mater. Trans. B, 2004, 35B: 223
[10] QiY F, WangB, ZhouJ Y, et al. Structure and property of W-Ni-Cu functionally graded materials by composite electrodeposition [J]. Rare Metal. Mat. Eng., 2017, 46(12): 3893
[10] (齐艳飞, 王 波, 周景一等. 复合电沉积制备W-Ni-Cu梯度材料的组织及性能 [J]. 稀有金属材料与工程, 2017, 46(12): 3893)
[11] SprengelW, KoiwaM. The Decisive Contributions by L. Boltzmann and C. Matano to the Quantitative Analysis of Diffusion Phenomena [J]. Diff. Found., 2014, 1: 49
[12] SnablM, OndrejcekM. Surface diffusion of K on Pd 111: Coverage dependence of the diffusion coefficient determined [J]. J. Chem. Phys., 1998
[13] Den BroederF J A. BroederF J A D. A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems [J]. Scripta Metall., 1969, 3(5): 321
[14] FengL, LiJ S, CuiY W, et al. Research on interdiffusion behavior of Ti-Zr binary alloy in the β phase [J]. Rare Metal. Mat. Eng., 2011, 40(4): 610
[14] (冯 亮, 李金山, 崔予文等. Ti-Zr二元合金在β相区的互扩散行为研究 [J]. 稀有金属材料与工程, 2011, 40(4): 610)
[15] WeiH, LiuG, XiaoX, et al. Dynamic recrystallization behavior of a medium carbon vanadium micro alloyed steel [J]. Mater. Sci. Eng. A, 2013, 573: 215
[16] Martín-MartínR, Dorta-GuerraR, TorsneyB. Multiplicative algorithm for discriminating between Arrhenius and non-Arrhenius behaviour [J]. Chemom. and Intell. Lab. Syst., 2014, 139(15): 146
[17] ZhangC, YaoY, ChenS. Size-dependent surface energy density of typically fcc metallic nanomaterials [J]. Comput. Mater. Sci., 2014, 82(1): 372
[18] TanikerS, YilmazC. Phononic gaps induced by inertial amplification in BCC and FCC lattices [J]. Phys. Lett. A, 2013, 377(30): 1930
[19] ChenS Q, WangP, ZhangD. The influence of sulphate-reducing bacteria on heterogeneous electrochemical corrosion behavior of Q235 carbon steel in seawater [J]. Mater. Corros., 2016, 67(4): 340
[20] ShenD, LiG, GuoC, et al. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation [J]. Appl. Surf. Sci., 2013, 287(24): 451
[21] NishimuraT, KatayamaH, NodaK, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
[22] DunnD S, BogartM B, BrossiaC S, et al. Corrosion of iron under alternating wet and dry conditions [J]. Corrosion, 2000, 56: 470
[23] ZhangJ, LiuF L, LiW H, et al. Effects of Srb on corrosion of Zn-Al-Cd anode in marine sediment [J]. Acta Metall. Sin., 2010, 46 (10): 1250
[23] (张 杰 , 刘奉令, 李伟华等. 海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响 [J]. 金属学报, 2010, 46(10): 1250)
[24] GaoN, WangC, ZhangF H, et al. The Influence of major ions on the corrosion of penetrating zinc steel in oil field water [J]. J. Petro. Univ., 2011, 24(3): 31
[24] (高 楠, 王 婵, 张凤华等. 油田采出水中主要腐蚀离子对渗锌碳钢的腐蚀 [J].石油化工高等学校学报, 2011, 24(3): 31)
[25] MaT, YangG Y, DengM L, et al. Research status and prospect of copper-bearing steel [J]. Hot Work. Technol., 2017, 46(2):36.
[25] (马 涛, 杨桂宇, 邓美乐等. 含铜钢的研究现状及展望 [J]. 热加工工艺, 2017, 46(2): 36)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.