Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 929-935    DOI: 10.11901/1005.3093.2018.190
  研究论文 本期目录 | 过刊浏览 |
介孔蔗渣碳的氮官能化改性及其对Hg2+吸附的影响
李坤权(), 李博宇
南京农业大学工学院 南京 210031
Effect of Modification with Nitrogen Functional Groups on Structure and Adsorption Performence of Biomass Active Carbon
Kunquan LI(), Boyu LI
(College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)
引用本文:

李坤权, 李博宇. 介孔蔗渣碳的氮官能化改性及其对Hg2+吸附的影响[J]. 材料研究学报, 2018, 32(12): 929-935.
Kunquan LI, Boyu LI. Effect of Modification with Nitrogen Functional Groups on Structure and Adsorption Performence of Biomass Active Carbon[J]. Chinese Journal of Materials Research, 2018, 32(12): 929-935.

全文: PDF(720 KB)   HTML
摘要: 

以甘蔗渣为原料、磷酸作为改性剂制备了生物质碳BAC,用硝酸氧化和乙二胺对其修饰后制备出多胺介孔蔗渣基生物质碳BAC-EDA。采用低温液氮吸附/脱附,根据BET、BJH、t-plot、FTIR分析改性前后蔗渣碳BAC、BAC-EDA的孔结构和表面化学官能团,研究了改性对重金属汞吸附的影响。结果表明,生物质碳BAC和BAC-EDA由介孔和少量微孔组成,在改性后的多胺介孔蔗渣基生物质碳表面新增了羧基、内酯基等含氧酸性官能团以及氨基含氮官能团,而且改性前后生物质碳的微介孔所占比例恒定。这些结果表明,官能团的引入是在微介孔上同时进行的。吸附试验结果表明,改性后的蔗渣碳BAC-EDA的最大吸附量为137 mg·g-1,远高于未改性的蔗渣碳AC的吸附量73 mg·g-1,说明硝酸氧化和乙二胺改性提高了生物质碳的吸附性能。使用Langmuir模型能更好地描述汞在BAC-EDA上的吸附,进一步说明改性后碳材料活性位点的均一性。同时,温度升高有利于吸附,说明这个过程是一个自发吸热过程。

关键词 复合材料氮官能化氧化缩聚乙二胺吸附    
Abstract

Nitrogen-doped bagasse biochar BAC-EDA was prepared via a two-step process, namely, the bagasse biochar was prepared with bagasse as raw material and phosphoric acid as modifying agent and then on which nitrogen-containing functional groups were further coupled with ethylenediamine as dressing agent. The pore structure of BAC and BAC-EDA was characterized by means of BET, BJH and t-plot methods based on the experimental data of liquid nitrogen adsorption/desorption. Meanwhile acidic groups were characterized by FTIR method. Results show that pores of biochar BAC and BAC-EDA are mainly of mesopores with a small amount of micropores. There existed oxygen-containing acidic functional groups on the surface the nitrogen-doped bagasse biochar BAC-EDA, such as carboxyl groups, lactone groups and amino nitrogen-containing functional groups etc. The proportions of the micro-mesopores of the biomass carbon are constant before and after modification, which indicating that the introduction of the functional groups is realized simultaneously on the surface of both the micro- and meso-pores. Adsorption experiments show that the maximum adsorption amount of the modified BAC-EDA is 137 mg·g-1, much higher than that of the plain BAC 73 mg·g-1, indicating that the nitric acidoxidation and ethylenediamine modification effectively improve the adsorption capacity of biomass biochar. The Langmuir model can better describe the adsorption of Hg(Ⅱ) by BAC-EDA, further illustrating the homogeneity of the active sites of the modified carbon. Besides, the temperature is conducive to adsorption, showing that the process is a spontaneous endothermic process.

Key wordscomposite    nitric functionalization    oxidative condensation    ethylenediamine    adsorption
收稿日期: 2018-03-08     
基金资助:国家自然科学基金(21876086)和江苏省重点研发计划(BE2018708)
作者简介:

作者简介 李坤权,男,1976年生,副教授

图1  蔗渣碳BAC和BAC-EDA的低温氮吸附脱附等温线和DFT孔径分布图
Sample SBET/m2·g-1 Vmicroporous/cm3·g-1 Vmesoporous/cm3·g-1 Dpore/nm
BAC 978 0.049 1.08 4.97
BAC-EDA 435 0.014 0.385 4.03
表1  蔗渣碳的孔结构特征
图2  蔗渣碳BAC和BAC-EDA的红外光谱图
图3  改性对Hg(Ⅱ)吸附的影响
图4  Hg(Ⅱ)在BAC-EDA上的等温吸附拟合线
Isothermal curves Constant BAC-EDA
25℃ 35℃ 45℃
Langmuir
qe=kq0ce/(1+kce)
q0/mg·g-1 224.8 254.8 500.48
k/L·mg-1 3.63 3.93 1.67
R2 0.975 0.953 0.934
Freundlich
qe=kFce1/n
kF/L·mg-1 218.2 273.6 428.6
n 1.85 1.73 1.31
R2 0.913 0.889 0.92
表2  蔗渣碳BAC-EDA对Hg(Ⅱ)的等温吸附拟合结果
Adsorbent Maximum adsorption amount
/mg·g-1
Optimum pH
Dithizone-immobilized Natiral
zeolite[23]
2.62 8
Powdered activatel carbon[24] 3.02 10.6
Modified zeolite[25] 3.3 6
Fe3O4 magnetic nanographene[26] 35 8
TiO2 titanate nanotube[27] 121 10
BAC-EDA 137 6
表3  改性蔗渣碳BAC-EDA与不同吸附剂吸附量对比结果
[1] Lu G H, Yue C S, Peng B, et al.Review of research progress on the remediation technology of mercury contaminated soil[J]. Chin. J. Eng., 2017, 39: 1(卢光华, 岳昌盛, 彭犇等. 汞污染土壤修复技术的研究进展[J]. 工程科学学报, 2017, 39: 1)
[2] Wang S L, Wu W.Research progress of soil mercury pollution in Guizhou[J]. Technol. Innov. Appl., 2017, (27): 173(王时亮, 吴维. 贵州土壤汞污染生态研究进展[J]. 科技创新与应用, 2017, (27): 173)
[3] Xu J Y, Bravo A G, Lagerkvist A, et al.Sources and remediation techniques for mercury contaminated soil[J]. Environ. Int., 2015, 74: 42
[4] Ma Y F, Wu X Y, Xue X M.Present situation and screening strategies of remediation technology for mercury-contaminated soil[J]. Environ. Sci. Manage., 2015, 40(12): 107(马跃峰, 武晓燕, 薛向明. 汞污染土壤修复技术的发展现状与筛选流程研究[J]. 环境科学与管理, 2015, 40(12): 107)
[5] Liu Y Z, Gao J C, Sui Z Y, et al.Application progresses of microelectrolysis technology in industrial wastewater treatment[J]. Environ. Protect. Chem. Industry, 2017, 37: 136(刘雨知, 高嘉聪, 隋振英等. 微电解技术在工业废水处理中的应用进展[J]. 化工环保, 2017, 37: 136)
[6] Mohammadi A, Daemi H, Barikani M.Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles[J]. Int. J. Biol. Macromol., 2014, 69: 447
[7] Wu X B, Wu D C, Fu R W, et al.Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal[J]. Dyes Pigm., 2012, 95: 689
[8] Liang J F.Preparation of functional ordered mesoporous carbon materials and their applications in catalysis for nitrobenes [D]. Taiyuan: Shanxi University, 2017(梁继芬. 改性有序介孔碳材料的制备及在催化硝基芳烃的应用研究 [D]. 太原: 山西大学, 2017)
[9] Su X L, Yang Q, Cui D N, et al.Adsorption of uranium (VI) on polyacrylonitrile/orderly mesoporous carbon composites[J]. Jiangxi Chem. Industry, 2015, (2): 89(苏晓龙, 杨倩, 崔丹妮等. 聚丙烯腈/有序介孔碳复合材料吸附铀(Ⅵ)的性能研究[J]. 江西化工, 2015, (2): 89)
[10] Fu T, Ling X J, Ding Y, et al.Adsorption performance analysis of modified mesoporous carbon on three indexs in drinking water[J]. Environ. Sci. Technol., 2017, 40(10): 49(付婷, 凌小佳, 丁莹等. 改性介孔碳对饮用水中3种指标吸附性能分析[J]. 环境科学与技术, 2017, 40(10): 49)
[11] Pan X C, Tang J, Xue H R, et al.Synthesis and electrocatalytic performance of N-doped ordered mesoporous carbon-Ni nanocomposite[J]. Chin. J. Inorg. Chem., 2015, 31: 282(潘旭晨, 汤静, 薛海荣等. 氮掺杂有序介孔碳-Ni纳米复合材料的制备及电化学性能[J]. 无机化学学报, 2015, 31: 282)
[12] Liu M D, Li S Z, Yang D H.Biomass derived amino-functionalized carbonaceous materials for Hg2+ removal[J]. Appl. Chem. Industry, 2013, 42: 1035(刘明灯, 李守柱, 杨丹红. 氨基化生物质炭吸附水中汞离子性能研究[J]. 应用化工, 2013, 42: 1035)
[13] Li K Q, Yang M R, Wang Y J, et al.Preparation of amine-modified mesoporous activated carbon and its adsorption of lead(II) from aqueous solution[J]. China Environ. Sci., 2014, 34: 1985(李坤权, 杨美蓉, 王燕锦等. 新型胺化介孔炭的制备及其对Pb(II)的吸附[J]. 中国环境科学, 2014, 34: 1985)
[14] Li L H, Ma M M, Ren Q J, et al.Adsorption of rhodamine B on carboxylated ordered mesoporous carbon[J]. Environ. Protect. Chem. Industry, 2016, 36: 157(李丽华, 马明明, 任庆军等. 羧基化改性有序介孔碳对罗丹明B的吸附[J]. 化工环保, 2016, 36: 157)
[15] Yang X N, Lira C T. Modeling of adsorption on porous activated carbons using SLD-ESD model with a pore size distribution [J]. Chem. Eng. J., 2012, 195-196: 314
[16] Chen T, Wang T, Wang D J, et al.Selective adsorption behavior of Cu(II) and Cr(VI) heavy metal ions by functionalized ordered mesoporous carbon[J]. Acta Phys. -Chim. Sin., 2010, 26: 3249(陈田, 王涛, 王道军等. 功能化有序介孔碳对重金属离子Cu(Ⅱ)、Cr(Ⅵ)的选择性吸附行为[J]. 物理化学学报, 2010, 26: 3249)
[17] Li K Q, Jiang Y, Wang X H, et al.Effect of nitric acid modification on the lead(II) adsorption of mesoporous biochars with different mesopore size distributions[J]. Clean Technol. Environ. Policy, 2016, 18: 797
[18] Li N, Han Y M, Xu J X, et al.The surface modification of ordered mesoporous carbon and its supercapacitive behaviors[J]. J. Funct. Mater., 2015, 46(suppl.): 25(李娜, 韩一明, 许建雄等. 有序介孔碳材料的表面改性及电化学性能研究[J]. 功能材料, 2015, 46(suppl.): 25)
[19] Li K Q, Li Y, Zheng Z, et al.Preparation, charcterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution[J]. Environ. Chem., 2013, 32: 2134(李坤权, 李烨, 郑正等. 窄孔径中孔棉秆活性炭的制备与性能表征[J]. 环境化学, 2013, 32: 2134)
[20] Zhai B, Gao Y.Application of mesoporous carbon and modified mesopo-rous carbon for the research on treatment of NPEOs[J]. Environ. Sci. Technol., 2017, 30(1): 10(翟彬, 高雅. 介孔碳及其改性材料对壬基酚聚氧乙烯醚吸脱附性能的研究[J]. 环境科技, 2017, 30(1): 10)
[21] Liang L, Zhu Q C, Shi L, et al.The efficient removal of dyes over magnetic Ni embedded on mesoporous graphitic carbon material[J]. J. Por. Mater., 2014, 21: 985
[22] Liu F, Zhang S, Li J M, et al.Comparative research on modified mesoporous carbon and activated carbon in wastewater adsorption experiments[J]. Exp. Technol. Manage., 2017, 34(7): 31(刘芳, 张双, 李佳蔓等. 改性介孔碳和活性炭在废水吸附实验中的对比研究[J]. 实验技术与管理, 2017, 34(7): 31)
[23] Mudasir M, Karelius K, Aprilita N H, et al.Adsorption of mercury(II) on dithizone-immobilized natural zeolite[J]. J. Environ. Chem. Eng., 2016, 4: 1839
[24] Zhou G, Liu W J, Feng Z M, et al.Study on mercury adsorption by powdered activated carbon for the heavy metals[J]. Water Wastewater Eng., 2013, 39(5): 120(周刚, 刘文君, 冯兆敏等. 吸附重金属用活性炭对汞的去除特性研究[J]. 给水排水, 2013, 39(5): 120)
[25] Zhu X H, Chen X M, Yang W, et al.Characterization of trace mercury adsorption by modified zeolite[J]. Chin. J. Environ. Eng., 2016, 10: 6261(朱保虎, 陈小敏, 杨文等. 改性沸石对水中微量汞的吸附性能[J]. 环境工程学报, 2016,, 10: 6261)
[26] Zhu H, Zhou C, Wang Q, et al.Synthesis of Fe3O4 magnetic graphene oxide nanocomposite and its adsorption for Mercury (II)[J]. Technol. Water Treat., 2018, 44(1): 48(朱鹤, 周超, 王钦等. Fe3O4磁性纳米氧化石墨烯制备及对汞(II)的吸附[J]. 水处理技术, 2018, 44(1): 48)
[27] López-Mu?oz M J, Arencibia A, Cerro L, et al. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents[J]. Appl. Surf. Sci., 2016, 367: 91
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.