Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (9): 685-690    DOI: 10.11901/1005.3093.2018.114
  本期目录 | 过刊浏览 |
La掺杂纳米ZnO/硅藻土复合材料的制备及其对甲醛气体的降解性能
李勰1(), 朱晓东2, 王婷婷1, 王会3
1 宁波工程学院材料与化学工程学院 宁波 315211
2 宁波市产品质量监督检验研究院 宁波 315699
3 中国科学院上海高等研究院 上海 201210
Degradation of Formaldehyde Gas by Composites of La-doped Nano ZnO/diatomite
Xie LI1(), Xiaodong ZHU2, Tingting WANG1, Hui WANG3
1 Department of Material and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
2 Ningbo Academy of Product Quality Supervision Inspection, Ningbo 315699, China
3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
引用本文:

李勰, 朱晓东, 王婷婷, 王会. La掺杂纳米ZnO/硅藻土复合材料的制备及其对甲醛气体的降解性能[J]. 材料研究学报, 2018, 32(9): 685-690.
Xie LI, Xiaodong ZHU, Tingting WANG, Hui WANG. Degradation of Formaldehyde Gas by Composites of La-doped Nano ZnO/diatomite[J]. Chinese Journal of Materials Research, 2018, 32(9): 685-690.

全文: PDF(3672 KB)   HTML
摘要: 

用两相界面法合成一系列不同含量的稀土La掺杂的ZnO纳米粒子,然后用三氯乙酸对ZnO纳米粒子进行表面活化并与酸处理后的硅藻土混合,用溶胶凝胶技术制备了改性ZnO/硅藻土复合材料。使用傅里叶变换红外(FT-IR)光谱、粉末X射线衍射(XRD)、扫描电镜(SEM)、热重分析(TG)等手段对所制备的材料进行表征,研究了改性纳米ZnO/硅藻土复合材料对甲醛的降解性能。结果表明:与纯ZnO材料相比,La掺杂使ZnO复合纳米材料在可见光区域降解甲醛的性能大幅度提高。

关键词 复合材料La:ZnO两相界面甲醛降解稀土掺杂光催化剂    
Abstract

A series of ZnO nanoparticles doped with different La-content were synthesized by two-phase interface method. Then the surface of ZnO nanoparticles was activated by trichloroacetic acid, and finally, the composite of modified ZnO/diatomite was prepared by using sol gel technology. The nanoparticles were characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG) and other techniques. Results show that in comparison to the composite with the blank nano-ZnO, the degradation of formaldehyde induced by the composite with the La doped nano-ZnO in the visible region has been greatly improved.

Key wordscomposite    La:ZnO    two phase interface    degradation of formaldehyde    rare earth doped    photocatalyst
收稿日期: 2018-01-17     
ZTFLH:  TQ133  
基金资助:国家自然科学基金(21405085)
作者简介:

作者简介 李 勰,男,1985年生

图1  两相界面法反应示意图
图2  模拟仓环境示意图
Sample D / nm
ZnO 62
0.2% La:ZnO 53
0.5% La:ZnO 49
1.0% La:ZnO 48
2.0% La:ZnO 48
表1  不同镧掺杂量的氧化锌的平均晶粒尺寸
图3  不同镧掺杂量的氧化锌样品粉末X射线衍射谱图
图4  不同镧掺杂量的氧化锌样品扫描电镜图
图5  稀土La掺杂量对甲醛降解效果的影响
图6  ZnO、1.0%La:ZnO和1.0% La:ZnO /硅藻土复合材料的红外图谱
图7  ZnO、1.0%La:ZnO和1.0% La:ZnO/硅藻土复合材料的热重分析
图8  硅藻土、1.0%La:ZnO和硅藻土基纳米ZnO对甲醛气体吸附降解效果的比较
[1] Zhang C B, He H, Wang L, et al.Review of noble metal catalysts for the oxidation of formaldehyde and air purification in indoor environment at room temperature[J]. Chin. Sci. Bull., 2009, 54: 278(张长斌, 贺泓, 王莲等. 负载型贵金属催化剂用于室温催化氧化甲醛和室内空气净化[J]. 科学通报, 2009, 54: 278)
[2] Bi Y B, Hu H Y, Ouyang S X, et al.Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications[J]. Chem. Eur. J., 2012, 18: 14272
[3] Liu J, Li M Z, Wang J X, et al.Hierarchically macro-mesoporous Ti-Si oxides photonic crystal with highly efficient photo catalytic capability[J]. Environ. Sci. Technol., 2009, 43: 9425
[4] Bi Y P, Ye J H.In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties[J]. Chem. Commun., 2009, (43): 6551
[5] Kim B H, Lim T H, Roh J W, et al.Effect of Cr doping on the properties and photocatalytic activity of Bi12TiO20[J]. React. Kinet., Mechan. Catal., 2010, 99: 217
[6] Kato H, Kudo A.Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. J. Phys. Chem., 2002, 106B: 5029
[7] Niishiro R, Konta R, Kato H, et al.Photocatalytic O2 evolution of rhodium and antimony-codoped rutile-type TiO2 under visible light irradiation[J]. J. Phys. Chem., 2007, 111C: 17420
[8] Niishiro R, Kato H, Kudo A.Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 Evolution from aqueous solutions[J]. Phys. Chem. Chem. Phys., 2005, 7: 2241
[9] Faughnan B W.Photochromism in transition-metal-doped SrTiO3 [J]. Phys. Rev., 1971, 4B: 3623
[10] Li H, Wang J S, Li H Y, et al.Photocatalytic activity of (sulfur, nitrogen)-codoped mesoporous TiO2 thin films[J]. Res. Chem. Intermed., 2010, 36: 27
[11] Sun Q Q, Wang S M, Wang Z M.Preparation and doping modification of ZnO nanorods by microwave heating[J]. J. Mater. Sci. Eng., 2013, 31: 732(孙强强, 王书民, 王正民. 微波法制备纳米棒状氧化锌及其掺杂改性[J]. 材料科学与工程学报, 2013, 31: 732)
[12] Zhang H, Qian F P.Photocatalytic property of TiO2 catalyst doped with cerium[J]. Chin. J. Process Eng., 2011, 11: 514(张浩, 钱付平. Ce掺杂TiO2催化剂的光催化性能[J]. 过程工程学报, 2011, 11: 514)
[13] Rattana T, Suwanboon S, Amornpitoksuk P, et al.Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution[J]. J. Alloys Compd., 2009, 480: 603
[14] Yan H W, Hou J B, Fu Z P, et al.Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation[J]. Mater. Res. Bull., 2009, 44: 1954
[15] Feng P, Wang H J, Yu H, et al.Preparation of aluminum foil-supported nano-sized ZnO Thin films and its photocatalytic degradation to phenol under visible light irradiation[J]. Mater. Res. Bull., 2006, 41: 2123
[16] Wang C L, Zheng S L, Liu G H, et al.Preparation of aluminium silicate-wollastonite composite powder and its application in PP[J]. Acta Mater. Compos. Sin., 2009, 26(3): 35
[17] Sun T, Chen J Y, Zhou C Y, et al.Specific surface area and oil adsorption of calcinated kaolin clay[J]. J. Chin. Ceram. Soc., 2013, 41: 685
[18] Deka S, Joy P A.Electronic Structure and Ferromagnetism of Polycrystalline Zn1-xCoxO (0≤x≤0.15)[J]. Solid State Commun., 2005, 134: 665
[19] Kim Y D, Copper S L, Klein M V, et al.Spectroscopic ellipsometry study of the diluted magnetic semiconductor system Zn (Mn, Fe, Co)Se[J]. Phys. Rev., 1994, 49B: 1732
[20] Jia Z G, Peng K K, Wang Q Z, et al.Preparation of iron-nickel composite oxides by carboxylate coordination precursor method and their adsorption property of Cr[J]. J. Chin. Ceram. Soc., 2013, 41: 540
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.