Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 142-148    DOI: 10.11901/1005.3093.2017.625
  研究论文 本期目录 | 过刊浏览 |
Cr/Ni当量比对CAP1400核主泵泵壳用奥氏体不锈钢性能的影响
康秀红(), 胡小强, 郑雷刚, 夏立军
中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
Effect of Cr/Ni Equivalent Ratio on Microstructure and Properties of Austenitic Stainless Steel CAP1400 for Reactor Coolant Pump Casing
Xiuhong KANG(), Xiaoqiang HU, Leigang ZHENG, Lijun XIA
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

康秀红, 胡小强, 郑雷刚, 夏立军. Cr/Ni当量比对CAP1400核主泵泵壳用奥氏体不锈钢性能的影响[J]. 材料研究学报, 2018, 32(2): 142-148.
Xiuhong KANG, Xiaoqiang HU, Leigang ZHENG, Lijun XIA. Effect of Cr/Ni Equivalent Ratio on Microstructure and Properties of Austenitic Stainless Steel CAP1400 for Reactor Coolant Pump Casing[J]. Chinese Journal of Materials Research, 2018, 32(2): 142-148.

全文: PDF(3300 KB)   HTML
摘要: 

基于热力学分析,设计了2种不同Cr/Ni当量比的CAP1400核主泵泵壳用奥氏体不锈钢,研究了Cr/Ni当量比和固溶处理温度对这类钢中铁素体的含量及其350℃拉伸性能的影响。结果表明,Cr/Ni当量比较大时,泵壳用奥氏体钢中铁素体含量较多,更为粗大;而且350℃时抗拉强度较高,能满足CAP1400核主泵泵壳的力学性能要求。在1100~1200℃不同温度固溶处理后,随着固溶处理温度的提高泵壳用奥氏体不锈钢中铁素体的含量略有提高,但是对350℃时的拉伸强度影响较小。

关键词 金属材料奥氏体不锈钢Cr/Ni当量比固溶处理铁素体含量核主泵泵壳    
Abstract

Austenitic stainless steels with different Cr / Ni equivalent ratio for CAP1400 reactor coolant pump casings were designed based on thermodynamics consideration. The effect of Cr/Ni equivalent ratio and solution treatment temperature on the ferrite volume fraction and tensile properties of the steel at 350℃ were investigated by microstructure observation and tensile tests. Results show that with the increase of Cr/Ni equivalent ratio the amount of ferrite-phase in austenitic stainless steel increases and the ferrite-phase is more bulky. The austenitic stainless steel with high Cr/Ni equivalent ratio has a higher tensile strength at 350℃, which can meet the requirements of mechanical properties for CAP1400 pump casing. After solution treatment at different temperatures in the range from 1100~1200℃, the content of ferrite-phase in the studied steel was slightly increased with the raising of solution treatment temperature, but it had little effect on the tensile properties at 350℃.

Key wordsmetallic materials    austenitic stainless steel    Cr/Ni equivalent ratio    solution treatment    ferrite contents    nuclear reactor coolant pump casing
收稿日期: 2017-10-19     
ZTFLH:  TG171  
基金资助:辽宁省科技创新重大专项(201410003)
作者简介:

作者简介 康秀红,女,1976年生,博士,副研究员

Elements C Mn Si S P Cr Ni Mo Fe
Specification ≤0.08 ≤1.50 ≤2.00 ≤0.005 ≤0.03 18.0~21.0 8.0~11.0 ≤0.50 Bal.
表1  CAP1400核主泵泵壳用奥氏体不锈钢的成分
Strength parameter Rm/MPa Rp0.2/MPa
Requirement ≥404 ≥144
表2  CAP1400核主泵泵壳用奥氏体不锈钢的350℃拉伸性能要求
图1  CAP1400-1和CAP1400-2铸态样品的热处理制度
Elements C Mn Si Ni Cr Mo S P N O Fe
CAP1400-1 0.063 1.16 1.49 11.25 19.72 0.52 0.0004 0.004 0.026 0.0009 Bal.
CAP1400-2 0.056 1.18 1.49 8.60 19.95 0.39 0.0007 0.005 0.028 0.0008 Bal.
表3  CAP1400核主泵泵壳奥氏体不锈钢实验铸锭化学成分(%, mass fraction)
图2  在平衡态下CAP1400奥氏体不锈钢的凝固规律
Elements C Mn Si Ni Cr Mo S P N O Fe Creq/Nieq
CAP1400-1 0.060 1.20 1.50 11.00 20.00 0.50 ≤0.0015 ≤0.01 0.03 ≤0.0015 Bal. 0.99
CAP1400-2 0.060 1.20 1.50 8.00 20.00 0.50 ≤0.0015 ≤0.01 0.03 ≤0.0015 Bal. 1.22
表4  CAP1400泵体奥氏体不锈钢合金设计化学成分(%,质量分数)
图3  在平衡态下CAP1400-1和CAP1400-2奥氏体不锈钢中平衡相质量分数与温度的关系
图4  CAP1400-1和CAP1400-2的铸态组织
Steel Creq/Nieq Calculated ferrite fraction/%,
volume fraction
Measured ferrite fraction/%,
volume fraction
CAP1400-1 0.99 4.8 6.6±1.1
CAP1400-2 1.22 14.5 12.1±1.3
表5  CAP1400-1和CAP1400-2铸态组织中铁素体含量
图5  CAP1400-1合金在不同温度固溶处理后的光学组织形貌
图6  CAP1400-2合金在不同温度固溶处理后的光学组织形貌
图7  热处理制度对CAP1400-1和CAP1400-2合金中铁素体含量的影响
图8  CAP1400-1和CAP1400-2的350℃拉伸时的屈服强度和抗拉强度
图9  固溶温度对CAP1400-1和CAP1400-2合金350℃拉伸延伸率的影响
图10  在350℃固溶处理试样的拉伸断口微观形貌
[1] Flowers J W, Beck F H, Fontana M G.Corrosion and age hardening studies of some cast stainless alloys containing ferrite[J]. Corrosion, 1963, 19(5): 186
[2] Moller G E.The successful use of austenitic stainless steels in sea water[J]. Society of Petroleum Engineers, 1976:101
[3] McCaul C. A cavitation-resistant casting alloy for pumps-status after ten years' commercial use[C]. Second International Symposium on Advanced Materials for Fluid Machinery, 2004: 15
[4] Mathew M D, Lietzan L M, Murty K L, et al.Low temperature aging embrittlement of CF-8 stainless steel[J]. Mater. Sci. Eng., A, 1999, 269(1): 186
[5] Beck F H, Juppenlatz J, Wieser P F.Effects of ferrite and sensitization on intergranular and stress-corrosion behavior of cast stainless steels[J]. Astm Special Technical Publication, 1976
[6] Chen J Z, Yan H B, Zheng Y M, et al.Influences of ferrite content on the performance of casting austenitic stainless steel CF-3M[J]. Development and Application of Materials, 2002, 17(6): 9(陈继志, 颜红兵, 郑咏梅等. 铁素体对铸造奥氏体不锈钢CF-3M性能的影响[J]. 材料开发与应用, 2002, 17(6): 9)
[7] Zhang H, Li S L, Liu G, et al.Effects of hot working on the microstructure and thermal ageing impact fracture behaviors of Z3CN20-09M duplex stainless steel[J]. Acta Metallurgica Sinica, 2017, 53(5): 531(张海, 李时磊, 刘刚等. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531)
[8] Li S L, Wang Y L, Li S X, et al.Effect of long term aging on the microstructure and mechanical properties of cast austenitic stainless steels[J]. Act. Metall. Sin., 2010, 46(10): 1186(李时磊, 王艳丽, 李树肖等. 长期热老化对铸造奥氏体不锈钢组织和性能的影响[J]. 金属学报, 2010, 46(10): 1186)
[9] Man D H, Wang L F.Weld hot cracking causes and preventive measures of austenitic stainless steel[J]. Hot Working Technology, 2012, 41(11): 181(满达虎, 王丽芳. 奥氏体不锈钢焊接热裂纹的成因及防止对策[J]. 热加工工艺, 2012, 41(11): 181)
[10] Wang Y T.Study on regularity of austenitic stainless steel weld toughness and microstructure [D]. Nanjing University of Science and Technology, 2012(王亚婷. 奥氏体不锈钢焊缝韧性与组织规律性研究[D]. 南京理工大学, 2012)
[11] Ma J C, Yang Y S, Tong W H, et al.Microstructural evolution in AISI 304 stainless steel during directional solidification and subsequent solid-state transformation[J]. Mater. Sci. Eng., A, 2007, 444(1): 64
[12] John C. Lippold, Damian J. Kotecki. Stainless Steel Welding Metallurgy and Weldability [M]. China Machine Press, 2008(John C. Lippold, Damian J.Kotecki [M]. 不锈钢焊接冶金学及焊接性[M]. 机械工业出版社, 2008)
[13] Zhang Y S, Zhang X Z, Tian X J, et al.Effect of heat treatment on microstructure and mechanical properties of 316LN austenitic stainless steel as-cast[J]. Hot Working Technology, 2011, 40(18): 180(张义帅, 张秀芝, 田香菊等. 加热规范对316LN铸态奥氏体不锈钢组织和性能的影响[J]. 热加工工艺, 2011, 40(18): 180)
[14] Lei R G.Effect of the heat treatment on the microstructure and mechanical properties of 316L[J]. Bao Steel Technology, 2009, 2009(5): 42(雷锐戈. 加热制度对316L铸坯微观组织和力学性能的影响[J]. 宝钢技术, 2009, 2009(5): 42)
[15] Li Y, Kou H C, Liu M T, et al.Influence of heat treatment on microstructure and mechanical property of austenitic stainless steel[J]. Science & Technology Review, 2011, 29(11-05): 37(李勇, 寇宏超, 柳木桐等. 热处理对奥氏体不锈钢00Cr18Ni10N组织和性能的影响[J]. 科技导报, 2011, 29(11-05): 37)
[16] Deng S H, Zhang J J, Ye X H, et al. Influence of heat treatment on properties of 304 austenitic stainless steel by adding copper for nickel saving[J]. Hot Working Technology, 2010(14): 145(邓姝皓, 张金菊, 叶晓慧等. 热处理对含铜节镍奥氏体不锈钢性能的影响[J]. 热加工工艺, 2010(14): 145)
[17] Lu S Y.Stainless Steel [M]. Atomic Energy Press, 1995(陆世英. 不锈钢[M]. 原子能出版社, 1995)
[18] Wu J, et al.Duplex Stainless Steel [M]. Metallurgical Industry Press, 1999(吴玖等. 双相不锈钢[M]. 冶金工业出版社, 1999)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.