Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 209-215    DOI: 10.11901/1005.3093.2017.422
  研究论文 本期目录 | 过刊浏览 |
聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度
王闻宇1, 刘亚敏1, 金欣1(), 肖长发1, 朱正涛1,2, 林童1,2
1 天津工业大学材料科学与工程学院 分离膜与膜过程省部共建国家重点实验室 天津 300387
2 美国南达科他矿业理工学院 拉皮德城 SD57702 美国;
Effect of Polypyrrole Modified Carbon Fiber on Interfacial Property of Composite PPy-carbon Fiber/epoxy
Wenyu WANG1, Yamin LIU1, Xin JIN1(), Changfa XIAO1, Zhengtao ZHU1,2, Tong LIN1,2
1 School of Materials Science and Engineering, State Key Laboratory of Membrane Separation and Membrane Processing, Tianjin University of Technology, Tianjin 300387, China
2 South Dakota Mining Institute, Rapid City SD57702, United States;
引用本文:

王闻宇, 刘亚敏, 金欣, 肖长发, 朱正涛, 林童. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度[J]. 材料研究学报, 2018, 32(3): 209-215.
Wenyu WANG, Yamin LIU, Xin JIN, Changfa XIAO, Zhengtao ZHU, Tong LIN. Effect of Polypyrrole Modified Carbon Fiber on Interfacial Property of Composite PPy-carbon Fiber/epoxy[J]. Chinese Journal of Materials Research, 2018, 32(3): 209-215.

全文: PDF(2349 KB)   HTML
摘要: 

应用等离子体技术对碳纤维(CF)表面进行预处理,然后进行液相沉积聚吡咯处理。使用X射线光电子能谱仪、原子力显微镜(AFM)、扫描电子显微镜(SEM)和傅立叶红外光谱仪等手段对碳纤维表面形态和结构进行分析与表征,并进行单纤维界面剪切强度试验和SEM观测,研究了碳纤维复合材料的界面粘结性能。结果表明,等离子体预处理碳纤维沉积聚吡咯(PPy)使单纤维界面剪切强度提高了259.3%。分析结果表明,界面剪切强度的提高与纤维/树脂间的机械铆合和界面的作用力有关。等离子体预处理使碳纤维表面的羧基基团增多,在羧基和PPy之间形成氢键,从而提高了碳纤维复合材料的界面性能。

关键词 复合材料聚吡咯等离子体氢键界面剪切强度    
Abstract

In order to improve the interfacial property of carbon fiber composites, the carbon fiber was pretreated by plasma technique and then coated with polypyrrole (PPy) by chemical oxidation polymerization of pyrrole. The surface modified carbon fiber and composite were characterized by SEM, AFM, XPS, FT-IR and IFSS. Results show that the interfacial shear strength of the modified single fiber increased by 259.3%, which may be ascribed to that the plasma pretreatment can increase the amount of polar groups on the surface of the carbon fiber, and facilitate the formation of hydrogen bonds between the carbon fiber and PPy, thus enhancing the interfacial property of the composite PPy-carbon fiber/epoxy.

Key wordscomposite    polypyrrole    plasma    hydrogen bond    interface shear strength
收稿日期: 2017-07-12     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51573136, 51103101);天津市自然科学基金(12JCYBJC17800, 16JCTPJC45100);天津市科技计划项目(15PTSYJC00230, 15PTSYJC00240,15PTSYJC00250)
作者简介:

作者简介 王闻宇,男,1972年生,副教授

图1  单纤维复合材料的界面剪切强度
图2  碳纤维/环氧树脂复合材料断面的SEM照片
图3  碳纤维的SEM照片
图4  碳纤维的AFM照片
图5  碳纤维的XPS全谱图
图6  碳纤维的C1s分峰谱图
Samples CF p-CF PPy-CF PPy-p-CF
C 94.65 65.90 77.90 78.04
O 4.66 21.94 6.99 6.16
N 0.21 3.43 9.68 12.98
O/C 4.90 32.3 9.00 8.00
C—C 86.05 37.46 44.40 42.80
COH 6.79 24.05 0.00 0.00
C=O 6.40 13.54 26.40 24.30
COOH 0.76 24.94 0.00 0.00
C—N 0.00 0.00 29.20 32.90
表1  不同处理条件下碳纤维表面的化学组成
图7  不同样品的红外光谱图
[1] Han S H, Oh H J, Kim S S.Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites[J]. Compos. Part B, 2014, 60: 98
[2] Sharma M, Gao S L, M?der E, et al.Carbon fiber surfaces and composite interphases[J]. Compos. Sci. Technol., 2014, 102: 35
[3] Luo H L, Xiong G Y, Ren K J, et al.Air DBD plasma treatment on three-dimensional braided carbon fiber-reinforced PEEK composites for enhancement of in vitro bioactivity[J]. Surf. Coat. Technol., 2014, 242: 1
[4] Jia X L, Zeng Z G, Li G, et al.Enhancement of ablative and interfacial bonding properties of EPDM composites by incorporating epoxy phenolic resin[J]. Compos. Part B, 2013, 54: 234
[5] Xu Z W, Chen L, Huang Y D, et al.Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy[J]. Eur. Polym. J., 2008, 44: 494
[6] Varelidis P C, McCullough R L, Papaspyrides C D. The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers[J]. Compos. Sci. Technol., 1999, 59: 1813
[7] Hughes J D H. The carbon fibre/epoxy interface—a review[J]. Compos. Sci. Technol., 1991, 41: 13
[8] Guo H, Huang Y D, Meng L H, et al.Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water[J]. Mater. Lett., 2009, 63: 1531
[9] Ezekiel H B, Sharp D, Villalba M M, et al.Laser anodised carbon fibre: coupled activation and patterning of sensor substrates[J]. J. Phys. Chem. Solids, 2008, 69: 2932
[10] Guo H, Huang Y D, Liu L, et al.Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites[J]. Mater. Des., 2010, 31: 1186
[11] Ho K K C, Beamson G, Shia G, et al. Surface and bulk properties of severely fluorinated carbon fibres[J]. J. Fluor. Chem., 2007, 128: 1359
[12] Harry I D, Saha B, Cumming I W.Surface properties of electrochemically oxidised viscose rayon based carbon fibres[J]. Carbon, 2007, 45: 766
[13] Montes-Morán M A, van Hattum F W J, Nunes J P, et al. A study of the effect of plasma treatment on the interfacial properties of carbon fibre-thermoplastic composites[J]. Carbon, 2005, 43: 1795
[14] Peng Q Y, He X D, Li Y B, et al.Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly (amidoamine) for enhancing interfacial strength in carbon fiber composites[J]. J. Mater. Chem., 2012, 22: 5928
[15] He X D, Zhang F H, Wang R G, et al.Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers[J]. Carbon, 2007, 45: 2559
[16] Zhao F, Huang Y D.Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface: novel coupling agents for fiber/polymer matrix composites[J]. J. Mater. Chem., 2011, 21: 3695
[17] Meng L H, Fan D P, Zhang C H, et al.The effect of oxidation treatment with supercritical water/hydrogen peroxide system on intersurface performance for polyacrylonitrile-based carbon fibers[J]. Appl. Surf. Sci., 2013, 273: 167
[18] Park S J, Kim M H.Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites[J]. J. Mater. Sci., 2000, 35: 1901
[19] Qian X, Wang X F, Ouyang Q, et al.Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation[J]. Appl. Surf. Sci., 2012, 259: 238
[20] Xie J F, Xin D W, Cao H Y, et al.Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment[J]. Surf. Coat. Technol., 2011, 206: 191
[21] Georgakilas V, Dallas P, Niarchos D, et al.Polypyrrole/MWNT nanocomposites synthesized through interfacial polymerization[J]. Synth. Met., 2009, 159: 632
[22] Bian L N, Xiao C F, Jin X.A study on structure and properties of PPy-UHMWPE fibers[J]. J. Text. Res., 2011, 32(3): 1(边丽娜, 肖长发, 金欣. PPy-UHMWPE纤维结构与性能的研究[J]. 纺织学报, 2011, 32(3): 1)
[23] Jin X, Wang W Y, Xiao C F, et al.Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating[J]. Compos. Sci. Technol., 2016, 128: 169
[24] Varelidis P C, McCullough R L, Papaspyrides C D. The Effect of temperature on the single-fiber fragmentation test with coated carbon fibers[J]. Compos. Sci. Technol., 1998, 58: 1487
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.