Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 90-96    DOI: 10.11901/1005.3093.2017.264
  研究论文 本期目录 | 过刊浏览 |
核/壳结构PS/MSiO2复合颗粒的制备和压缩弹性模量
陈杨1(), 左长智1, 陈爱莲2, 汪亚运1
1 常州大学材料科学与工程学院 常州 213164
2 常州大学机械工程学院 常州 213164
Synthesis, Characterization and Compressive Elastic Modulus of Core/Shell Structured PS/MSiO2 Composite Particles
Yang CHEN1(), Changzhi ZUO1, Ailian CHEN2, Yayun WANG1
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2 School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
引用本文:

陈杨, 左长智, 陈爱莲, 汪亚运. 核/壳结构PS/MSiO2复合颗粒的制备和压缩弹性模量[J]. 材料研究学报, 2018, 32(2): 90-96.
Yang CHEN, Changzhi ZUO, Ailian CHEN, Yayun WANG. Synthesis, Characterization and Compressive Elastic Modulus of Core/Shell Structured PS/MSiO2 Composite Particles[J]. Chinese Journal of Materials Research, 2018, 32(2): 90-96.

全文: PDF(3207 KB)   HTML
摘要: 

以用聚乙烯吡咯烷酮(PVP)表面修饰的聚苯乙烯(PS, 约260 nm)微球为内核并利用PVP与十六烷基三甲基溴化铵之间的液相协同自组装过程,制备出以介孔氧化硅(Mesoporous silica, MSiO2)为包覆层的核/壳结构PS/MSiO2复合颗粒。结果表明,在样品壳层中有大量的放射状介孔孔道,壳层的厚度约为60 nm;样品的比表面积为848 g/m2,平均孔径为2.54 nm。根据单个复合颗粒的力曲线,使用Hertz弹性接触模型拟合出样品的压缩弹性模量为(4.47±0.83)(泊松比取值0.33)和(4.89±0.89) GPa(泊松比取值0.2)。对比结果表明,壳层中丰富介孔孔道有利于提高有机/无机复合颗粒的弹性响应。

关键词 复合材料颗粒核壳结构扫描探针显微镜压缩弹性模量Hertz模型    
Abstract

Firstly, polystyrene (PS) microspheres (ca. 260 nm) were surface-modified with polyvinylpyrrolidone (PVP) via a soap-free emulsion polymerization method. Then core-shell composites of PS/MSiO2 with PS as core and mesoporous silica as shell materials were prepared via a synergistic self-assembly process of PVP surfactants and cetyltrimethylammonium bromide micelles. The results indicated that the silica shells were about 60 nm in thickness with radial meso- channels. The specific surface area of the composites and the average pore size of silica meso-channels were 848 g/m2 and 2.54 nm, respectively. The compressive elastic moduli (E) of the individual composite particle were assessed by analyzing the force-displacement curves, measured by scanning probe microscopy, on the basis of the Hertz contact model. The fitted and calculated E values were 4.47±0.83 (Poisson's ratio=0.33) and 4.89±0.89 GPa (Poisson's ratio=0.2), respectively. These results suggest that the improvement of the elastic response of organic/inorganic composite particles may be ascribed to the presence of mesoporous shells, indicating a potential application in optimizing the structural design of novel non-rigid composite abrasives.

Key wordscomposite    particle    core/shell structure    scanning probe microscope    compressive elastic modulus    Hertz model
收稿日期: 2017-04-18     
ZTFLH:  TB383  
基金资助:国家自然科学基金(51205032、51405038和51575058)
作者简介:

作者简介 陈 杨,男,1978年生,博士,副教授

图1  探针针尖的低倍和高倍SEM照片
图3  复合颗粒样品的XRD图谱
图4  复合颗粒样品的氮气吸脱附等温线和插入的孔径分布曲线
图2  PS内核和PS/MSiO2复合颗粒的TEM和SEM照片
图5  附着在衬底表面颗粒样品的AFM二维形貌和所记录的力曲线
图6  复合颗粒样品典型的曲线
图7  压缩弹性模量拟合计算曲线(Hertz模型)
Samples Reduced Young's modulus/GPa Young's modulus/GPa R2 Mean Young's modulus /GPa
1 5.899 5.257 0.9972 4.47±0.83
2 5.875 5.236 0.9956
3 5.185 4.620 0.9624
4 4.282 3.816 0.9930
5 3.851 3.432 0.9708
表1  复合颗粒样品压缩弹性模量的拟合计算结果
[1] Krishnan M, Nalaskowski J W, Cook L M.Chemical mechanical planarization: slurry chemistry, materials, and mechanisms[J]. Chem. Rev., 2010, 110: 178
[2] Zhang Z Y, Wang B, Zhou P, et al.A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors[J]. Sci. Rep., 2016, 6: 22466
[3] Armini S, Vakarelski I U, Whelan C M, et al.Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy[J]. Langmuir, 2007, 23: 2007
[4] Armini S, Whelan C M, Moinpour M, et al.Copper CMP with composite polymer core-silica shell abrasives: a defectivity study[J]. J. Electrochem. Soc., 2009, 156: H18
[5] Chen A L, Zhang Z F, Li X Z, et al.Evaluation of oxide chemical mechanical polishing performance of polystyrene coated ceria hybrid abrasives[J]. J. Mater. Sci. Mater. Med., 2016, 27: 2919
[6] Chen Y, Li Z N, Miao N M.Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance[J]. Tribol. Int., 2015, 82: 211
[7] Chen A L, Mu W B, Chen Y.Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO2 composite abrasives evaluated by AFM[J]. Appl. Surf. Sci., 2014, 290: 433
[8] Zhu L J, Teng L, Bai M S, et al.Experimental study of Zerodur glass polishing with core-shell structured PS/CeO2 composite abrasives[J]. Aviat. Precis. Manuf. Technol., 2014, 50(1): 1(朱良健, 滕霖, 白满社等. PS/CeO2核壳型复合磨粒的微晶玻璃抛光试验研究[J]. 航空精密制造技术, 2014, 50(1): 1
[9] Murata J, Ueno Y, Yodogawa K, et al.Polymer/CeO2-Fe3O4 multicomponent core-shell particles for high-efficiency magnetic-field-assisted polishing processes[J]. Int. J. Mach. Tools Manuf., 2016, 101: 28
[10] Jano? P, Ederer J, Pila?ová V, et al. Chemical mechanical glass polishing with cerium oxide: effect of selected physico-chemical characteristics on polishing efficiency [J]. Wear, 2016, 362-363: 114
[11] Murata J, Yodogawa K, Ban K.Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane-CeO2 core-shell particles[J]. Int. J. Mach. Tools Manuf., 2017, 114: 1
[12] Chen Y, Li Z F, Qin J W, et al.Monodispersed mesoporous silica (mSiO2) spheres as abrasives for improved chemical mechanical planarization performance[J]. J. Mater. Sci., 2016, 51: 5811
[13] Ran Z P, Sun Y, Chang B S, et al.Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier[J]. J. Coll. Interf. Sci., 2013, 410: 94
[14] Mark J E.Polymer Data Handbook [M]. Oxford: Oxford University Press, 1999
[15] Jauffrèsa D, Yacou C, Verdier M, et al.Mechanical properties of hierarchical porous silica thin films: experimental characterization by nanoindentation and Finite Element modeling[J]. Microporous Mesoporous Mater., 2011, 140: 120
[16] Huang M X, Liu L, Wang S G, et al.Dendritic mesoporous silica nanospheres synthesized by a novel dual-templating micelle system for the preparation of functional nanomaterials[J]. Langmuir, 2017, 33: 519
[17] Brigo L, Scomparin E, Galuppo M, et al.Mesoporous silica sub-micron spheres as drug dissolution enhancers: Influence of drug and matrix chemistry on functionality and stability[J]. Mater. Sci. Eng., 2016, 59C: 585
[18] Blas H, Save M, Pasetto P, et al.Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: radial orientation of mesopore channels[J]. Langmuir, 2008, 24: 13132
[19] Guo D, Li J N, Xie G X, et al.Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: size effect and error analysis[J]. Langmuir, 2014, 30: 7206
[20] Chen Y, Qian C, Song Z T, et al.Measurement of compressive Young's modulus of polymer particles using atomic force microscopy[J]. Chin. J. Mater. Res., 2014, 28: 509(陈杨, 钱程, 宋志棠等. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量[J]. 材料研究学报, 2014, 28: 509
[21] Glaubitz M, Medvedev N, Pussak D, et al.A novel contact model for AFM indentation experiments on soft spherical cell-like particles[J]. Soft Matter, 2014, 10: 6732
[22] Touhami A, Nysten B, Dufrêne Y F.Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy[J]. Langmuir, 2003, 19: 4539
[23] Tsukruk V V, Shulha H, Zhai X W.Nanoscale stiffness of individual dendritic molecules and their aggregates[J]. Appl. Phys. Lett., 2003, 82: 907
[24] Chemin N, Klotz M, Rouessac V, et al.Mechanical properties of mesoporous silica thin films: effect of the surfactant removal processes[J]. Thin Solid Films, 2006, 495: 210
[25] Niu C, Wu X Q, Ren W, et al.Mechanical properties of low k SiO2 thin films templated by PVA[J]. Ceram. Int., 2015, 41(suppl.1): S365
[26] Chen Y, Mu W B, Lu J X.Determination of elastic modulus of composite PS/CeO2 core-shell microspheres by atomic force microscope[J]. Tribology, 2012, 32: 7(陈杨, 穆为彬, 陆锦霞. 核壳结构PS/CeO2复合微球弹性模量的AFM测定[J]. 摩擦学学报, 2012, 32: 7
[27] Chen A L, Qian C, Miao N M, et al.Effect of shell thickness on compressive elastic modulus of core-shell structured PS-SiO2 hybrid particles[J]. Acta Mater. Compos. Sin., 2015, 32: 1125(陈爱莲, 钱程, 苗乃明等. 壳层厚度对核-壳结构PS-SiO2杂化颗粒压缩弹性模量的影响[J]. 复合材料学报, 2015, 32: 1125
[28] Chen Y, Qin J W, Wang Y Y, et al.Core/shell composites with polystyrene cores and meso-silica shells as abrasives for improved chemical mechanical polishing behavior[J]. J. Nanopart. Res., 2015, 17: 363
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.