|
|
316LN钢焊缝在冲击过程中裂纹扩展行为分析 |
代克顺, 朱黎, 王晗, 肖文凯( ) |
武汉大学动力与机械学院 武汉 430072 |
|
Crack Propagation of Weld Joint for Steel 316LN by Impact Loading |
Keshun DAI, Li ZHU, Han WANG, Wenkai XIAO( ) |
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China |
引用本文:
代克顺, 朱黎, 王晗, 肖文凯. 316LN钢焊缝在冲击过程中裂纹扩展行为分析[J]. 材料研究学报, 2017, 31(12): 939-946.
Keshun DAI,
Li ZHU,
Han WANG,
Wenkai XIAO.
Crack Propagation of Weld Joint for Steel 316LN by Impact Loading[J]. Chinese Journal of Materials Research, 2017, 31(12): 939-946.
[1] | Xu X P, Needleman A.Numerical simulations of fast crack growth in brittle solids[J]. J. Mech. Phys. Solids, 1994, 42: 1397 | [2] | Haselbach P U, Bitsche R D, Branner K.The effect of delaminations on local buckling in wind turbine blades[J]. Renew. Energ., 2016, 85: 295 | [3] | Zhou W, Liu R, Wang Y R, et al.Acoustic emission monitoring and finite element analysis for torsion failure of Metal/FRP cylinder-shell adhesive joints[J]. J. Adhes. Sci. Technol., 2015, 29: 2433 | [4] | Zhang Y, Mabrouki T, Nelias D, et al.Cutting simulation capabilities based on crystal plasticity theory and discrete cohesive elements[J]. J. Mater. Process. Technol., 2012, 212: 936 | [5] | Arora H, Tarleton E, Li-Mayer J, et al.Modelling the damage and deformation process in a plastic bonded explosive microstructure under tension using the finite element method[J]. Comput. Mater. Sci., 2015, 110: 91 | [6] | Nafar Dastgerdi J, Anbarlooie B, Marzban S, et al.Mechanical and real microstructure behavior analysis of particulate-reinforced nanocomposite considering debonding damage based on cohesive finite element method[J]. Comp. Struct., 2015, 122: 518 | [7] | Yang L, Wu Z J, Gao D Y, et al.Microscopic damage mechanisms of fibre reinforced composite laminates subjected to low velocity impact[J]. Comput. Mater. Sci., 2016, 111: 148 | [8] | Hashemi R, Spring D W, Paulino G H.On small deformation interfacial debonding in composite materials: Containing multi-coated particles[J]. J. Comp. Mater., 2015, 49: 3439 | [9] | Espinosa H D, Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples[J]. Mech. Mater., 2003, 35: 365 | [10] | Espinosa H D, Zavattieri P D.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation[J]. Mech. Mater., 2003, 35: 333 | [11] | Li Y, Zhou M.Prediction of fracturess toughness of ceramic composites as function of microstructure: II. Analytical model[J]. J. Mech. Phys. Solids, 2013, 61: 489 | [12] | Li Y, Zhou M.Prediction of fracture toughness of ceramic composites as function of microstructure: I. Numerical simulations[J]. J. Mech. Phys. Solids, 2013, 61: 472 | [13] | Zhai J, Tomar V, Zhou M.Micromechanical simulation of dynamic fracture using the cohesive finite element method[J]. J. Eng. Mater. Technol., 2004, 126: 179 | [14] | Hütter G, Zybell L, Kuna M.Micromechanical modeling of crack propagation in nodular cast iron with competing ductile and cleavage failure[J]. Eng. Fract. Mech., 2015, 147: 388 | [15] | Barrera O, Tarleton E, Cocks A C F. A micromechanical image-based model for the featureless zone of a Fe-Ni dissimilar weld[J]. Philosoph. Mag., 2014, 94: 1361 | [16] | Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J.Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding[J]. Mater. Des., 2015, 68: 167 | [17] | Matsuno T, Teodosiu C, Maeda D, et al.Mesoscale simulation of the early evolution of ductile fracture in dual-phase steels[J]. Int. J. Plasticity, 2015, 74: 17 | [18] | Saeidi K, Gao X, Zhong Y, et al.Hardened austenite steel with columnar sub-grain structure formed by laser melting[J]. Mater. Sci. Eng., 2015, 625A: 221 | [19] | Khan A S, Huang S J.Continuum Theory of Plasticity[M]. New York: John Wiley & Sons, Inc. | [20] | Gupta A K, Anirudh V K, Singh S K.Constitutive models to predict flow stress in Austenitic Stainless Steel 316 at elevated temperatures[J]. Mater. Des., 2013, 43: 410 | [21] | Ardakani S H, Afshar A, Mohammadi S.Numerical study of thermo-mechanical coupling effects on crack tip fields of mixed-mode fracture in pseudoelastic shape memory alloys[J]. Int. J. Solids Struct., 2016, 81:160 | [22] | Yuan H, Li X.Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models[J]. Eng. Fract. Mech., 2014, 126: 1 | [23] | Guo E Y, Wang M Y, Jing T, et al.Temperature-dependent mechanical properties of an austenitic-ferritic stainless steel studied by in situ tensile loading in a scanning electron microscope (SEM)[J]. Mater. Sci. Eng., 2013, 580A: 159 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|