Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 659-664    DOI: 10.11901/1005.3093.2016.494
  研究论文 本期目录 | 过刊浏览 |
溶胶凝胶原位成型陶瓷结合剂砂轮中碳化硅的改性
刘莹莹, 万隆(), 王俊沙
湖南大学材料科学与工程学院 长沙 410082
Surface Modification of SiC Powders in Vitrified Grinding Wheel by In-situ Sol-gel Method
Yingying LIU, Long WAN(), Junsha WANG
College of Materials Science and Engineering , Hunan University, Changsha 410082, China
引用本文:

刘莹莹, 万隆, 王俊沙. 溶胶凝胶原位成型陶瓷结合剂砂轮中碳化硅的改性[J]. 材料研究学报, 2017, 31(9): 659-664.
Yingying LIU, Long WAN, Junsha WANG. Surface Modification of SiC Powders in Vitrified Grinding Wheel by In-situ Sol-gel Method[J]. Chinese Journal of Materials Research, 2017, 31(9): 659-664.

全文: PDF(1016 KB)   HTML
摘要: 

使用硅烷偶联剂KH550作为表面活性剂对碳化硅微粉表面进行改性,使用扫描电镜、X射线衍射仪、激光粒度分析仪和红外光谱仪等手段研究了改性前后微粉的形貌、表面性质、粒度分布及烧结体微观形貌。结果表明,硅烷偶联剂与碳化硅通过接枝反应在其表面形成包覆层,但是不改变其物相和结构。改性后碳化硅微粉的团聚减少,因此平均粒径减小;颗粒间的静电斥力和空间位阻增大,改善了碳化硅颗粒在溶胶中的悬浮稳定性和分散性。与未改性的SiC相比,用溶胶凝胶原位成型SiC/陶瓷复合材料改性后SiC与陶瓷的烧结体结构均匀,抗弯强度较高。

关键词 无机陶瓷材料表面改性硅烷偶联剂碳化硅分散性抗弯强度    
Abstract

KH550 silane coupling was used as surfactant to modify the surface of SiC powders. The morphology, surface property and particle size distribution of SiC powders before and after modification were investigated by scanning electron microscope, X-ray diffractometer, laser particle analyzer and infrared spectroscopy. Results show that the surface of SiC powders was coated with a thin layer of KH550 via grafting reaction, which did not change phase constituent and structure of the SiC powders. After modification, the agglomeration of powders alleviated , and thus their average size also decreased. Due to the increase of electrostatic repulsion and steric hindrance among SiC powders, the suspensibility and dispersibility of powders in sol were improved. To simulate the production of vitrified grinding wheel of SiC/ceramic composite, simulate sintered compacts of SiC/ceramic composite were fabricated comparatively with plain- and the modified-SiC by means of a twostep process: forming by in-situ sol-gel method and then sintering at desired temperature. It follows that the produced sintered compact with the modified SiC shows better uniformity in microstructure and higher bending strength as well.

Key wordsinorganic vitrified materials    surface modification    silane coupling    SiC    dispersibility    Bend strength
收稿日期: 2016-08-22     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51375157)
作者简介:

作者简介 刘莹莹,女,1990年生,硕士生

Component SiO2 Al2O3 ZnO Na2O Li2O
Content/% 51.6 7.1 9.1 10.7 21.5
表1  陶瓷结合剂配方(%)
图1  改性前后碳化硅微粉的IR光谱分析
图2  改性前后SiC微粉的XRD图谱
图3  改性前后SiC微粉粒径分布
Sample D10/μm D50/μm D90/μm
a 1.58 4.11 6.3
b 1.27 3.69 5.75
c 1.05 1.70 5.12
d 1.12 3.48 6.72
表2  经KH550改性前后SiC微粉粒径分布
图4  不同质量的KH550改性碳化硅在溶胶中静置4 h后的沉降情况
图5  改性前后SiC微粉的SEM照片
图6  改性前后SiC/陶瓷烧结体的断面形貌图
Technological Unmodified SiC powder Modified SiC powder
Porosity/% 26.34 22.69
Volume density
/gcm-3
1.89 2.12
表3  改性前后SiC/陶瓷烧结体的性能
图7  改性前后SiC/陶瓷烧结体的抗弯强度和硬度
[1] Wang X K.Mechanical Processing Handbook: Precision machining and nano-machining high speed cutting machining difficult materials[M]. Beijing: Machinery Industry Press, 2008(王先逵. 机械加工工艺手册: 精密加工和纳米加工高速切削难加工材料的切削加工[M]. 北京: 机械工业出版社, 2008)
[2] Sabri L, Mansori Ei M.Process variability in honing of cylinder liner with vitrified bonded diamond tools[J]. Surface and Coatings Technology, 2009, 204(6/7):1046
[3] Li X, Tie S N.Research on Surface modification of SiC powder with KH550 amino organosilances in semiconduct or manufacturing, Materials Review[J]. 2011, 25(7): 53(李星. 铁生年. KH550硅烷偶联剂对半导体制造用碳化硅微粉表面的改性研究[J].材料导报, 2011, 25(7):53)
[4] Zhang M, Wang X G, Chen J, et al.Eeffect of surface modification on the β-SiC powder fluidity[J]. Bulletin of the Chinese Ceramic Socity, 2011, 30(3): 519(张敏, 王晓刚, 陈进等. 表面改性对β-SiC微粉流动性的影响[J]. 硅酸盐通报, 2011, 30(3): 519)
[5] Wang X G, Zhang R, Deng L R, et al. Study on surface modification of β-SiCpowder by polythyleneimine[J]. Materials Review, 2013, 27(5):63(王晓刚, 张瑞, 邓丽荣等.聚乙烯亚胺对β–碳化硅微粉的表面改性研究[J]. 材料导报, 2013, 27(5): 63)
[6] Novak S, Kovac J, Draic G, et al.Surface characteristic and modification of submicron and nanosized silicon carbide powders[J].J Eur Ceram Soc, 2007, 27:3545
[7] JI X L, Zheng C H, Wei L, et al.Study on surface modification of silicon carbide powders with aminoorganosilanes[J]. Chem Bio-Eng, 2008, 25(1):21(吉晓莉, 郑彩华, 魏磊, 等.氨基硅烷偶联剂表面改性SiC微粉的研究[J]. 化学与生物工程, 2008, 25(1):21)
[8] Tie S N, Li X.Surface modification of SiC powder with silence coupling agent[J].Journal of the Chinese Cerramic Society, 2011, 39(3):409(铁生年, 李星. 硅烷偶联剂对碳化硅微粉的表面改性, 硅酸盐学报, 2011, 39(3): 409)
[9] J S Wang, L Wan, S Y Hao, et al.Surface modification of diamond and its effect on the mechanical properties of diamond/epoxy composites[J]. Sci. Eng. Compos. Mater., 2015, 10: 1515
[10] Chen J, Wan L, Shi D, et al.Effects of surfactant on sufpension property of diamond in resin and associativity between diamond and resin[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1416(陈静, 万隆, 时丹等. 表面活性剂对金刚石在树脂中悬浮性及与树脂结合性的影响[J]. 复合材料学报, 2014, 31(6): 1416)
[11] M K Wei, G J Zhang, Q D Wu.Processing of highly concentrated polyacrylamide-coated silicon carbide suspensions[J]. Ceramics International, 2004, 30(2): 125
[12] Li F S.Ultrafine Powder Technology[M]. National Defense Industry Press, 2001(李凤生. 超细粉体技术[M]. 国防工业出版社, 2001)
[13] Winkler J, Klinke E, et al.Theory for the deagglomeration of pigments clusters in dispersion machinery by mechanical force[J] Journal of Coating Technology, 1987, 59(754): 45
[14] Cihangir Duran, Hasan Gocmez, Huseyin Yilmaz.Dispersion of mechanochemically activated SiC and Al2O3 powders[J] Materials Science and Engineering. 2008, 475: 23
[15] Zhang X H, Hou Y, Hu P, et al.Dispersion and co-dispersion of ZrB2 and SiC nanopowders in ethanol[J]. Ceramics.2012, 38: 2733
[16] Shu D L.Mechanical Properties of Materials Engineering[M]. Beijing: Machinery Industry Press, 2010(束德林. 材料工程力学性能[M]. 北京: 机械工业出版社, 2010)
[17] HU W D.Study on preparation vitrified bond diamond grinding wheel by sol-gel method[D]. Changsha: Hunan University, 2013(胡伟达. 溶胶凝胶法制备陶瓷结合剂金刚石砂轮的研究[D]. 长沙: 湖南大学, 2013)
[18] Hou Y G.Ceramic Abrasives Manufacturing[M]. Beijing: China Light Industry Press, 2010(侯永改. 陶瓷磨具制造[M]. 北京:中国轻工业出版社, 2010)
[1] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[2] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[3] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[4] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
[5] 施渊吉, 陈显冰, 吴修娟, 王红军, 郭训忠, 黎军顽. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制[J]. 材料研究学报, 2020, 34(8): 628-634.
[6] 石从云,王金峰,陈红祥,杨旭萌,杜昌俊,李光要,刘鹏,蔡浩浩. 光棒废料改性环氧树脂复合材料的制备和性能[J]. 材料研究学报, 2020, 34(1): 57-63.
[7] 徐龙,刘福春,韩恩厚. PEDOTPSS改性锌粉对冷涂锌涂层防护性能的影响[J]. 材料研究学报, 2019, 33(10): 776-784.
[8] 王军凯, 张远卓, 李赛赛, 葛胜涛, 宋健波, 张海军. Fe催化硅藻土碳热还原反应制备3C-SiC及其机理[J]. 材料研究学报, 2018, 32(10): 767-774.
[9] 杨万利, 代丽娜, 史忠旗, 肖志超, 张旭辉. 浸渍热解对常压烧结SiC/h-BN陶瓷力学性能的影响[J]. 材料研究学报, 2017, 31(8): 635-640.
[10] 牛芳旭, 王延相, 刘群, Imran Abbas, 王成国. 重结晶碳化硅表面MoSi2-Si3N4抗氧化涂层的制备和性能[J]. 材料研究学报, 2017, 31(5): 329-335.
[11] 赵永华, 马兆昆, 宋怀河, 陈铭, 周正刚. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3): 229-234.
[12] 汪波, 黄赤, 黄志雄, 张景洁. 不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响[J]. 材料研究学报, 2016, 30(3): 209-219.
[13] 张鹏宇,王娜,杨凤,康海澜,方庆红. 偶联剂对白炭黑/天然橡胶纳米复合材料性能的影响[J]. 材料研究学报, 2015, 29(8): 607-612.
[14] 马小龙,敖玉辉,肖凌寒,董景隆,张会轩. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响[J]. 材料研究学报, 2015, 29(2): 101-107.
[15] 杨慎宇,唐三元,谭文成,曾戎,杨辉,黄馨霈,夏吉生,屠美. 羟基磷灰石接枝壳聚糖表面改性及其复合水凝胶的生物相容性*[J]. 材料研究学报, 2015, 29(11): 801-806.