Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 628-634    DOI: 10.11901/1005.3093.2019.600
  研究论文 本期目录 | 过刊浏览 |
基于分子动力学模拟的纳米多晶α-碳化硅变形机制
施渊吉1, 陈显冰1, 吴修娟1, 王红军1(), 郭训忠2, 黎军顽3
1 南京工业职业技术大学机械工程学院 南京 210046
2 南京航天航空大学材料科学与技术学院 南京 210016
3 上海大学材料科学与工程学院 上海 200072
Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation
SHI Yuanji1, CHEN Xianbing1, WU Xiujuan1, WANG Hongjun1(), GUO Xunzhong2, LI Junwan3
1 School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210046, China
2 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

施渊吉, 陈显冰, 吴修娟, 王红军, 郭训忠, 黎军顽. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制[J]. 材料研究学报, 2020, 34(8): 628-634.
Yuanji SHI, Xianbing CHEN, Xiujuan WU, Hongjun WANG, Xunzhong GUO, Junwan LI. Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation[J]. Chinese Journal of Materials Research, 2020, 34(8): 628-634.

全文: PDF(16155 KB)   HTML
摘要: 

在考虑晶界和温度效应影响的条件下,基于分子动力学法使用Vashishta势函数研究多晶α-碳化硅基体在纳米压痕作用下的塑性变形机制,分析载荷位移曲线并通过识别变形结构描述了变形区域中的原子破坏和迁移轨迹变化。在下压过程中,因接触载荷不断增大在接触区的晶粒内产生无定型化相变并不断向晶体内部扩展,扩展到晶界处被阻碍住。随着载荷的持续增大,晶界作为位错发射源在高应力水平下出现1/2〈110〉全位错滑移。同时,随着温度的升高α-碳化硅多晶的承载能力下降,特别是材料内部出现塑性变形,位错从晶界处形核长大并向晶体内部扩展,最后形成‘U型’位错环。

关键词 无机非金属材料分子动力学多晶α-碳化硅结构变形原子尺度    
Abstract

Based on the molecular dynamics method, Vashishta potential function was used to study the plastic deformation mechanism of polycrystalline α-silicon carbide matrix under the action of nano indentation in terms of the effect of grain boundary and temperature. The load displacement curve was analyzed, and the change of atomic failure and migration path in the deformation area was described by identifying the deformation structure. As the contact load increased the amorphous phase transformation occurred in the contact zone and expanded to the crystal interior, which was blocked by the grain boundary. With the increase of the load, the grain boundary as the source of 1/2<110> perfect dislocation emission will slip at high stress level. In addition, with the increase of temperature the bearing capacity of SiC polycrystal decreases, especially the plastic deformation occurs inside the material, the dislocation grows from the grain boundary to the inside of the crystal, and finally forms 'U-shaped' dislocation ring.

Key wordsinorganic non-metallic materials    molecular dynamics    polycrystalline    α-silicon carbide    structural deformation    atomic scale
收稿日期: 2019-12-25     
ZTFLH:  TH117.3  
基金资助:江苏省高等学校自然科学研究面上项目(19KJB430024);江苏省自然科学基金(BK20181036);南工院自然科学培育基金(YK190109)
作者简介: 施渊吉,男,1989年生,博士
图1  多晶α-碳化硅的纳米压痕分子动力学模拟模型
图2  多晶α-碳化硅的纳米压痕力-压痕深度曲线
图3  压痕过程中基体的变形
图4  在压痕过程中的von Mises应力分布
图5  在900K压痕过程中基体的变形
图6  在900K的压痕过程中位错的演化
[1] Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nature materials, 2016, 15(8): 804
pmid: 27443899
[2] Pan Q, Zhou H, Lu Q, et al. History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551(7679): 214
pmid: 29088707
[3] Taloni A, Vodret M, Costantini G, et al. Size effects on the fracture of microscale and nanoscale materials [J]. Nature Reviews Materials, 2018, 3(7): 211
[4] Bourne N, Millett J, Pickup I. Delayed failure in shocked α-silicon carbide [j]. journal of applied physics, 1997, 81(9): 6019
[5] Millett J, Bourne N, Dandekar D. Delayed failure in a shock-loaded α-silicon carbide [J]. Journal of applied physics, 2005, 97(11): 113513
[6] Pickup I, Barker A. Damage kinetics in α-silicon carbide; proceedings of the AIP Conference Proceedings, F, 1998 [C]. AIP
[7] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics [J]. J Comput Phys, 1995, 117(1): 1
[8] Kelchner C L, J P S, C H J. Dislocation nucleation and defect structure during surface indentation [J]. Phys Rev B, 1998, 5811085
[9] Branicio P S, Zhang J, Rino J P, et al. Shock-induced microstructural response of mono-and nanocrystalline SiC ceramics [J]. Journal of Applied Physics, 2018, 123(14): 145902
[10] Zhang J, Branicio P S. Molecular dynamics simulations of plane shock loading in SiC [J]. Procedia Engineering, 2014, 75150
[11] Makeev M A, Srivastava D. Hypersonic velocity impact on a-SiC target: A diagram of damage characteristics via molecular dynamics simulations [J]. Applied Physics Letters, 2008, 92(15): 151909
[12] Makeev M A, Srivastava D. Molecular dynamics simulations of hypersonic velocity impact protection properties of CNT/a-SiC composites [J]. Composites Science and Technology, 2008, 68(12): 2451
[13] Makeev M A, Sundaresh S, Srivastava D. Shock-wave propagation through pristine a-SiC and carbon-nanotube-reinforced a-SiC matrix composites [J]. Journal of Applied Physics, 2009, 106(1): 014311
[14] Hirel P. Atomsk: a tool for manipulating and converting atomic data files [J]. Comput Phys Commun, 2015, 197212
doi: 10.1016/j.cpc.2012.05.019 pmid: 25540463
[15] Xiang H, Li H, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Materialia, 2017, 138131-9
pmid: 22368454
[16] Hoover W G. Constant-pressure equations of motion [J]. Physical Review A, 1986, 34(3): 2499
[17] Vashishta P, Kalia R K, Rino J P, et al. Interaction potential for SiO 2: a molecular-dynamics study of structural correlations [J]. Phys Rev B, 1990, 41(17): 12197
[18] Vashishta P, Kalia R K, Nakano A, et al. Interaction potential for α-silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous α-silicon carbide [J]. Journal of applied physics, 2007, 101(10): 103515
[19] Maras E, Trushin O, Stukowski A, et al. Global transition path search for dislocation formation in Ge on Si (001) [J]. Comput Phys Commun, 2016, 20513
[20] Sun S, Peng X, Xiang H, et al. Molecular dynamics simulation in single crystal 3C-SiC under nanoindentation: Formation of prismatic loops [J]. Ceramics International, 2017, 43(18): 16313
doi: 10.1016/j.ceramint.2017.09.003
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.