Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (8): 607-612    DOI: 10.11901/1005.3093.2014.561
  本期目录 | 过刊浏览 |
偶联剂对白炭黑/天然橡胶纳米复合材料性能的影响
张鹏宇,王娜,杨凤,康海澜,方庆红()
沈阳化工大学材料科学与工程学院 沈阳 110142
Influence of Coupling Agent Si69 on Properties of Nanocomposites of Nature Rubber with Different Sized Nano-Silica
Pengyu ZHANG,Na WANG,Feng YANG,Hailan KANG,Qinghong FANG()
School of Material Science and Engineering, Shenyang University of Chemical Technology,Shenyang 110142, China
引用本文:

张鹏宇,王娜,杨凤,康海澜,方庆红. 偶联剂对白炭黑/天然橡胶纳米复合材料性能的影响[J]. 材料研究学报, 2015, 29(8): 607-612.
Pengyu ZHANG, Na WANG, Feng YANG, Hailan KANG, Qinghong FANG. Influence of Coupling Agent Si69 on Properties of Nanocomposites of Nature Rubber with Different Sized Nano-Silica[J]. Chinese Journal of Materials Research, 2015, 29(8): 607-612.

全文: PDF(3441 KB)   HTML
摘要: 

研究了偶联剂对不同粒径白炭黑(15 nm、30 nm、80 nm)/天然橡胶纳米复合材料的硫化特性、力学性能、应力软化效应、Payne 效应、损耗因子、压缩生热和动态热机械性能的影响, 并与未加入偶联剂的复合材料进行对比。结果表明: 加入偶联剂Si69使白炭黑在橡胶中的分散性提高, 增强白炭黑与橡胶基体之间的结合, 提高白炭黑/NR复合材料的力学性能, 降低胶料的正硫化时间; 白炭黑粒径越小Si69的作用越明显, 越有利于复合材料的硫化特性和力学性能的提高; 添加Si69使15 nm和30 nm白炭黑复合材料的Payne效应、损耗因子和定负荷压缩生热的温升降低, 但是对80 nm白炭黑复合材料的影响不大。

关键词 复合材料白炭黑硅烷偶联剂静态力学性能动态力学性能Payne效应    
Abstract

The effect of coupling agent silane Si69 on properties of nanocomposites of nature rubber with different sized nano-silica (15, 30 and 80 nm)was investigated in terms of curing performance, mechanical properties, Mullins effect, Payne-effect, loss factor, the dynamic heat build-up and dynamic mechanical property etc. while taking the same composites without coupling agent as comparison. Results show that with the addition of the coupling agent Si69, the dispersity of nano-silica in the rubber and the binding of nano-silica with the rubber matrix were improved; the mechanical properties of nano-silica/nature rubber composite were effectively enhanced and the positive sulfuration time t90 was shortened. It is noted that the smaller size of the nano-silica is, the better positive effect on the performance and mechanical properties of the composite can be obtained. Due to the addition of the coupling agent Si69, the Payne-effect, loss factor and the dynamic heat build-up can be reduced for the composites with nano-silica of 15 nm and 30 nm, respectively, but is not obvious for the ones with 80 nm silica.

Key wordscomposites    nano-silica    silane coupling agent    static mechanical properties    dynamic mechanical properties    Payne-effect
收稿日期: 2014-10-08     
基金资助:* 国家自然科学基金51173110、51103086和沈阳市应用基础研究F12-277-1-32资助项目。
Nanosilica Nanosilica with Si69
15 nm 30 nm 80 nm 15 nm 30 nm 80 nm
t10/min 9.95 9.72 8.44 8.75 8.92 8.12
t90/min 31.62 26.18 22.47 20.75 19.58 20.73
ML/dNm 0.111 0.163 0.132 0.103 0.057 0.007
MH/dNm 4.738 4.752 4.762 3.727 3.883 3.440
MH-ML /dNm 4.627 4.589 4.630 3.624 3.826 3.433
Tensile strength/MPa 8.96 12.28 14.31 16.29 19.24 14.60
Elongation at break /% 503 635 582 1048 883 810
Modulus at 100%/MPa 1.0 1.0 1.3 0.9 1.0 0.9
Modulus at 300%/MPa 2.8 2.3 3.8 2.0 2.5 2.7
表1  复合材料的硫化特性和力学性能
图1  Si69对白炭黑/NR复合材料应力软化性能的影响
图2  不同粒径白炭黑/NR复合材料的弹性模量G'与应变的关系曲线
图3  不同粒径白炭黑及添加Si69复合材料tanδ与应变的关系曲线
图4  Si69对白炭黑/NR复合材料压缩温升的影响
图5  Si69对白炭黑/NR复合材料动态热机械性能的影响
图6  白炭黑/NR复合材料的SEM像
1 LI Xi,LIU Lianli, WANG Lili, Status quo and progress in research nano-SiO2, Journal of Bohai University( Natural Science Edition), 27(4), 304(2006)
1 (李 曦, 刘连利, 王莉莉, 纳米二氧化硅的研究现状与进展, 渤海大学学报(自然科学版), 27(4), 304(2006))
2 S. J. Ahmadi, Y. D. Huang, W. Li,Synthetic Routes, Properties and future application of polimer-layered silicate nanicomposites, Mater. Sci., 39(6), 1919(2004)
3 ZHANG Yuefeng,ZHANG Yuqing, Applications and research progress of composite nano-SiO2, Journal of Tarim University, 22(1), 152(2010)
3 (张越峰, 张裕卿, 复合纳米二氧化硅的应用研究进展, 塔里木大学学报, 22(1), 152(2010))
4 LIU Jingchao,LI Xiaobing, ZHANG Hualin, YANG Yahui, FU Wanli, Study of epoxy resin reinforced and toughened by nm SiO2, Chinese Journal of Colloid & Polymer, 18(4), 15(2000)
4 (刘竞超, 李小兵, 张华林, 杨亚辉, 傅万里, 纳米二氧化硅增强增韧环氧树脂的研究, 胶体与聚合物, 18(4), 15(2000))
5 YANG Qingzhi, Practical Rubber Process Engineering (Beijing, Chemical Industry Press, 2005)p.93-96
6 S. S. Choi,Improvement of properties of silica-filled natural rubber composites using polychloroprene, J. Appl. Polym. Sci., 83, 2609(2002)
7 S. S. Choi,Improvement of properties of silica-filled styrene-butadiene rubber compounds using acrylonitrile butadiene rubber, J. Appl. Polym. Sci., 79, 1127(2001)
8 ZHANG Liqun,WU Youping, WANG Yiqing, The nano-reinforcing and nano-compounding technique of rubber, China Synthetic Rubber Industry, 23(2), 71(2000)
8 (张立群, 吴友平, 王益庆, 橡胶的纳米增强及纳米复合技术, 合成橡胶工业, 23(2), 71(2000))
9 G. R. Hamed,Reinforcement of rubber, Rubber Chemistry and Technology, 73(3), 524(2000)
10 LI Guangliang, Silicone Polymer Chemistry (Beijing, Science Press, 1998)p.149
11 S. Wolff, U. Gorl, M. J. Wang,How does silica differ from carbon black, Eur. Rubb. J., 176(1), 17(1994)
12 M. L. Hair, W. Hsrtl,Acidity of surface hydroxyl groups, The Journal of Physical Chemistry, 74(1), 91(1970)
13 J. A. Hockey, B. A. Pethica,Surface hydration of silicas, Transactions of the Faraday Society, 57, 2247(1961)
14 M. J. Wang, S. Wolff, J. B. Donnet,Filler-elstomer interactions: Silica surface energies and interactions with model compounds, Rubber Chem. Technol., 64(3), 559(1990)
15 ZHANG Bijun,HE Lizhong Bijun, Preliminary study of silica and natural rubber coupling agent Si69 interaction mechanism, Carbon Black Industry, 12(5), 26(1992)
15 (张碧俊, 何立中, 白炭黑偶联剂Si69及天然胶相互作用机理的初步探讨, 炭黑工业, 12(5), 26(1992))
16 A. Ansarifar, L. Wang, R. J. Ellis,Enhancing the mechanical properties of styrene-butadiene rubber by optimizing the chemical bonding between silanized silica nanofiller and the rubber, Journal of Applied Polymer Science, 105(2), 322(2007)
17 JIANG Qibin,JIA Demin, NING Kaijun, YAN Zhiyun, Interaction between carbon black and silica with a coupling agent Si69, China Synthetic Rubber Industry, 26(6), 362(2003)
17 (姜其斌, 贾德民, 宁凯军, 严志云, 炭黑和白炭黑与偶联剂Si69的相互作用, 合成橡胶工业, 26(6), 362(2003))
18 GAO Yi,ZHAO Suhe, LIU Xiao, Characterization and evaluation on organization degree of nano-silica, Synthetic Rubber Industry, 29(6), 424(2006)
18 (高 轶, 赵素合, 刘 晓, 纳米SiO2粉体有机化程度的表征及评价, 合成橡胶工业, 29(6), 424(2006))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.