Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (2): 101-107    DOI: 10.11901/1005.3093.2014.356
  本期目录 | 过刊浏览 |
表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响
马小龙1,敖玉辉1,3(),肖凌寒1,3,董景隆1,张会轩1,2
1. 长春工业大学化学与生命科学学院 长春 130012
2. 中国科学院长春应用化学研究所 长春 130022
3. 吉林省碳纤维开发与应用重点实验室 长春 130012
Effect of Surface Modification of Carbon Fiber on Friction Properties of Carbon Fiber/Phenolic Resin Matrix Composite
Xiaolong MA1,Yuhui AO1,3,**(),Linghan XIAO1,3,Jinglong DONG1,Huixuan ZHANG1,2
1. Changchun University of Technology, college of chemistry and life science, Changchun 130012, China
2. Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
3. Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun 130012, China
引用本文:

马小龙,敖玉辉,肖凌寒,董景隆,张会轩. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响[J]. 材料研究学报, 2015, 29(2): 101-107.
Xiaolong MA, Yuhui AO, Linghan XIAO, Jinglong DONG, Huixuan ZHANG. Effect of Surface Modification of Carbon Fiber on Friction Properties of Carbon Fiber/Phenolic Resin Matrix Composite[J]. Chinese Journal of Materials Research, 2015, 29(2): 101-107.

全文: PDF(5359 KB)   HTML
摘要: 

使用浓硝酸和硅烷偶联剂(hk550)对PAN基碳纤维(3K)进行表面改性, 以酚醛树脂为基体制备复合材料, 使用扫描电子显微镜(SEM), 傅里叶变换红外光谱(FTIR), 和X射线光电子能谱(XPS)等手段研究了碳纤维的结构和表面特性。用拉伸试验机测量了复合材料的拉伸强度, 用微纳米力学综合测试系统(UNMT-1)测量了复合材料的摩擦性能。结果表明, 用浓硝酸和偶联剂处理可提高碳纤维表面的粗糙度和化学活性, 可改善碳纤维与酚醛树脂基体之间的界面结合, 使复合材料的拉伸强度提高、磨损率降低。

关键词 复合材料偶联剂表面改性碳纤维摩损率    
Abstract

Polyacrylonitrile (PAN)-based carbon fiber was surface modified with HNO3 (65-68%) and silane coupling agent (hk550) and of which the structural and surface characteristics of were investigated by SEM, FT-IR, and X-ray photoelectron spectroscopy (XPS). Then the surface modified carbon fiber reinforced phenolic matrix composites were prepared. The tensile strength and the friction performance of the composites were examined by tensile testing machine and integrated micro-nano-mechanical test system (UNMT-1) respectively. The results showed that the surface modification with HNO3 and hk550 could enhance the surface chemical activity and roughness of the fibers, resulting in better interfacial adhesion between carbon fibers and phenolic resin matrix, therefore, improved the tensile strength and reduced the wear rate of the composites.

Key wordscomposite    coupling agent    surface modified    carbon fiber    wear rate
收稿日期: 2014-07-15     
基金资助:* 吉林省“十大”科技转化项目ZDZH11003资助项目。
图1  碳纤维处理前后的表面形貌
图2  碳纤维的红外光谱
Sample Element atomic fraction/% O(1s)/C(1s)%
C(1s) O(1s) N(1s)
CF-0 h CF-0.5 h CF-1.5 h CF-3 h 87.4 83.6 81.47 79.25 12 14.28 15.86 18.32 0.6 2.12 2.67 2.44 13.73 17.08 19.47 23.12
表1  不同处理后碳纤维表面元素分析
图3  不同试样的XPS光谱
图4  不同试样的C1s光谱
Samples CF CF-0.5 h CF-1.5 h CF-3 h
C-C 0.679 0.616 0.568 0.52
C-O-C 0.17 0.216 0.26 0.28
O-C=O 0.151 0.167 0.17 0.20
表2  碳纤维表面官能团含量
图5  hk550水解过程与碳纤维反应示意图
图6  不同试样的断口SEM照片
图7  复合材料的拉伸强度
图8  复合材料的磨损过程示意图
图9  复合材料磨损表面的SEM照片
图10  不同试样的动态摩擦系数
图11  复合材料的摩擦系数和磨损率
1 Wang YQ,Li J, Sliding wear behavior and mechanism of ultrahigh molecular weight polyethylene, Mater Sci Eng A, 266, 155(1999)
2 YU Dagang,LIN Youxi, GAO Chenghui, Research progress in frictional properties at high-temperature of friction materials based on phenolic resin, Engineering Plastics Application, 37(5), 82(2009)
2 (余大刚, 林有希, 高成辉, 酚醛树脂基摩擦材料高温摩擦性能的研究进展, 工程塑料应用, 37(5), 82(2009))
3 Phil E. Vickers, John F. Watts,Christian Perruchot, Mohamed M. Chehimi, The surface chemisty and acid-base properties of a pan based carbon fibre, Carbon, 38, 675(2000)
4 Yanjun Xie, Callum A.S. Hill,Zefang Xiao, Holger Militz, Carsten Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Composites: Part A, 41, 806(2010)
5 Masahiro Toyoda,Hiroshi katoh, Michio Inagaki, Intercalation of nitric acid into carbon fibers, Carbon, 39, 2231(2001)
6 Manabu Ishifune,Ryuhei Suzuki, Yasuo Mima, Kumao Uchida, Natsuki Yamashita, Shigenori Kashimura, Novel electrochemical surface modification method of carbon fiber and its utilization to the prepatation of functional electrode, Electrochimica Acta, 51, 14(2005)
7 Keming Ma,Baichen Wang, Ping Chen, Xia Zhou, Plasma treatment of carbon fibers: non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites, Applied surface Science, 257, 3824(2011)
8 Hua-Chiang Wen,Koho yang, Keng-Ling Ou, Effects of ammonia plasma treatment on the surface characteristics of carbon fibers, Surface & Coatings Technology, 200, 3166(2006)
9 Nam PS,Tribophysics, New Jersey: Prentice-Hall; 1986. pp. 63-102
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.